Automated Quantum Circuit Generation for Computing Inverse Hash Functions
- URL: http://arxiv.org/abs/2404.17142v1
- Date: Fri, 26 Apr 2024 03:55:46 GMT
- Title: Automated Quantum Circuit Generation for Computing Inverse Hash Functions
- Authors: Elena R. Henderson, Jessie M. Henderson, William V. Oxford, Mitchell A. Thornton,
- Abstract summary: Several cryptographic systems depend upon the computational difficulty of reversing cryptographic hash functions.
Hash functions can be cryptographically secure, and they are employed in encryption, authentication, and other security methods.
It has been suggested that such cryptographically-secure hash functions will play a critical role in the era of post-quantum cryptography.
- Score: 0.29998889086656577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Several cryptographic systems depend upon the computational difficulty of reversing cryptographic hash functions. Robust hash functions transform inputs to outputs in such a way that the inputs cannot be later retrieved in a reasonable amount of time even if the outputs and the function that created them are known. Consequently, hash functions can be cryptographically secure, and they are employed in encryption, authentication, and other security methods. It has been suggested that such cryptographically-secure hash functions will play a critical role in the era of post-quantum cryptography (PQC), as they do in conventional systems. In this work, we introduce a procedure that leverages the principle of reversibility to generate circuits that invert hash functions. We provide a proof-of-concept implementation and describe methods that allow for scaling the hash function inversion approach. Specifically, we implement one manifestation of the algorithm as part of a more general automated quantum circuit synthesis, compilation, and optimization toolkit. We illustrate production of reversible circuits for crypto-hash functions that inherently provide the inverse of the function, and we describe data structures that increase the scalability of the hash function inversion approach.
Related papers
- Quantum One-Wayness of the Single-Round Sponge with Invertible Permutations [49.1574468325115]
Sponge hashing is a widely used class of cryptographic hash algorithms.
Intrepid permutations have so far remained a fundamental open problem.
We show that finding zero-pairs in a random $2n$-bit permutation requires at least $Omega (2n/2)$ many queries.
arXiv Detail & Related papers (2024-03-07T18:46:58Z) - Randomized Reversible Gate-Based Obfuscation for Secured Compilation of
Quantum Circuit [5.444459446244819]
We propose an obfuscation technique for quantum circuits using reversible gates to protect them from such attacks during compilation.
Our method achieves TVD of up to 1.92 and performs at least 2X better than a previously reported obfuscation method.
arXiv Detail & Related papers (2023-05-02T00:24:34Z) - Publicly-Verifiable Deletion via Target-Collapsing Functions [81.13800728941818]
We show that targetcollapsing enables publiclyverifiable deletion (PVD)
We build on this framework to obtain a variety of primitives supporting publiclyverifiable deletion from weak cryptographic assumptions.
arXiv Detail & Related papers (2023-03-15T15:00:20Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - Unified Functional Hashing in Automatic Machine Learning [58.77232199682271]
We show that large efficiency gains can be obtained by employing a fast unified functional hash.
Our hash is "functional" in that it identifies equivalent candidates even if they were represented or coded differently.
We show dramatic improvements on multiple AutoML domains, including neural architecture search and algorithm discovery.
arXiv Detail & Related papers (2023-02-10T18:50:37Z) - A quantum algorithm for finding collision-inducing disturbance vectors
in SHA-1 [2.963904090194172]
Modern cryptographic protocols rely on sophisticated hash functions to generate quasi-unique numbers that serve as signatures for user authentication and other security verifications.
The security could be compromised by finding texts hash-mappable to identical numbers, forming so-called collision attack.
We propose an algorithm that takes advantage of entangled quantum states for concurrent seeding of candidate disturbance vectors.
arXiv Detail & Related papers (2022-10-23T16:01:17Z) - Controlled Alternate Quantum Walk based Block Hash Function [14.540996187637523]
Controlled quantum walk based hash function is a kind of novel hash function, which is safe, flexible, high-efficient, and compatible.
To process message in batch amounts, in this paper, controlled alternate quantum walk based block hash function is presented.
arXiv Detail & Related papers (2022-05-12T09:42:17Z) - A Variational Quantum Attack for AES-like Symmetric Cryptography [69.80357450216633]
We propose a variational quantum attack algorithm (VQAA) for classical AES-like symmetric cryptography.
In the VQAA, the known ciphertext is encoded as the ground state of a Hamiltonian that is constructed through a regular graph.
arXiv Detail & Related papers (2022-05-07T03:15:15Z) - Quantum collision finding for homomorphic hash functions [0.0]
We present concrete attack examples to provable hash functions, including a preimage attack to $oplus$-linear hash functions.
Hash functions which are additive or multiplicative are vulnerable to a quantum attack using the hidden subgroup problem algorithm for quantum computers.
arXiv Detail & Related papers (2021-07-30T23:01:02Z) - Quantum Fully Homomorphic Encryption by Integrating Pauli One-time Pad
with Quaternions [4.182969308816531]
Quantum fully homomorphic encryption (QFHE) allows to evaluate quantum circuits on encrypted data.
We present a novel QFHE scheme, which extends Pauli one-time pad encryption by relying on the quaternion of SU(2).
arXiv Detail & Related papers (2020-12-08T04:54:02Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.