Optimizing Cycle Life Prediction of Lithium-ion Batteries via a Physics-Informed Model
- URL: http://arxiv.org/abs/2404.17174v1
- Date: Fri, 26 Apr 2024 06:06:37 GMT
- Title: Optimizing Cycle Life Prediction of Lithium-ion Batteries via a Physics-Informed Model
- Authors: Constantin-Daniel Nicolae, Sara Sameer, Nathan Sun, Karena Yan,
- Abstract summary: Accurately measuring the cycle lifetime of commercial lithium-ion batteries is crucial for performance and technology development.
We introduce a novel hybrid approach combining a physics-based equation with a self-attention model to predict the cycle lifetimes of commercial lithium iron phosphate graphite cells via early-cycle data.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurately measuring the cycle lifetime of commercial lithium-ion batteries is crucial for performance and technology development. We introduce a novel hybrid approach combining a physics-based equation with a self-attention model to predict the cycle lifetimes of commercial lithium iron phosphate graphite cells via early-cycle data. After fitting capacity loss curves to this physics-based equation, we then use a self-attention layer to reconstruct entire battery capacity loss curves. Our model exhibits comparable performances to existing models while predicting more information: the entire capacity loss curve instead of cycle life. This provides more robustness and interpretability: our model does not need to be retrained for a different notion of end-of-life and is backed by physical intuition.
Related papers
- Predicting ionic conductivity in solids from the machine-learned potential energy landscape [68.25662704255433]
Superionic materials are essential for advancing solid-state batteries, which offer improved energy density and safety.
Conventional computational methods for identifying such materials are resource-intensive and not easily scalable.
We propose an approach for the quick and reliable evaluation of ionic conductivity through the analysis of a universal interatomic potential.
arXiv Detail & Related papers (2024-11-11T09:01:36Z) - DiffBatt: A Diffusion Model for Battery Degradation Prediction and Synthesis [0.7342676110939172]
We introduce a novel general-purpose model for battery degradation prediction and synthesis, DiffBatt.
It operates as a probabilistic model to capture uncertainty in aging behaviors and a generative model to simulate battery degradation.
It provides accurate results with a mean RMSE of 196 cycles across all datasets, outperforming all other models and demonstrating superior generalizability.
arXiv Detail & Related papers (2024-10-31T12:53:53Z) - Early-Cycle Internal Impedance Enables ML-Based Battery Cycle Life Predictions Across Manufacturers [2.9117750917060574]
Methods that construct features solely on voltage-capacity profile data typically fail to generalize across cell chemistries.
This study introduces a methodology that combines traditional voltage-capacity features with Direct Current Internal Resistance (DCIR) measurements.
arXiv Detail & Related papers (2024-10-05T17:04:25Z) - Generating Comprehensive Lithium Battery Charging Data with Generative AI [24.469319419012745]
This study introduces the End of Life (EOL) and Equivalent Cycle Life (ECL) as conditions for generative AI models.
By integrating an embedding layer into the CVAE model, we developed the Refined Conditional Variational Autoencoder (RCVAE)
Through preprocessing data into a quasi-video format, our study achieves an integrated synthesis of electrochemical data, including voltage, current, temperature, and charging capacity.
This method provides users with a comprehensive electrochemical dataset, pioneering a new research domain for the artificial synthesis of lithium battery data.
arXiv Detail & Related papers (2024-04-11T09:08:45Z) - Cerberus: A Deep Learning Hybrid Model for Lithium-Ion Battery Aging
Estimation and Prediction Based on Relaxation Voltage Curves [7.07637687957493]
This paper proposes a hybrid model for capacity aging estimation and prediction based on deep learning.
Our approach is validated against a novel dataset involving charge and discharge cycles at varying rates.
arXiv Detail & Related papers (2023-08-15T15:07:32Z) - Machine learning of hidden variables in multiscale fluid simulation [77.34726150561087]
Solving fluid dynamics equations often requires the use of closure relations that account for missing microphysics.
In our study, a partial differential equation simulator that is end-to-end differentiable is used to train judiciously placed neural networks.
We show that this method enables an equation based approach to reproduce non-linear, large Knudsen number plasma physics.
arXiv Detail & Related papers (2023-06-19T06:02:53Z) - Hybrid physics-based and data-driven modeling with calibrated
uncertainty for lithium-ion battery degradation diagnosis and prognosis [6.7143928677892335]
Lithium-ion batteries (LIBs) are key to promoting electrification in the coming decades.
Inadequate understanding of LIB degradation is an important bottleneck that limits battery durability and safety.
Here, we propose hybrid physics-based and data-driven modeling for online diagnosis and prognosis of battery degradation.
arXiv Detail & Related papers (2021-10-25T11:14:12Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
The present work aims to construct cheap-to-compute machine learning (ML) models to act as closure equations for predicting the physical properties of alternative fuels.
Those models can be trained using the database from MD simulations and/or experimental measurements in a data-fusion-fidelity approach.
The results show that ML models can predict accurately the fuel properties of a wide range of pressure and temperature conditions.
arXiv Detail & Related papers (2021-10-18T14:43:50Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
Redox flow batteries (RFBs) offer the capability to store large amounts of energy cheaply and efficiently.
There is a need for fast and accurate models of the charge-discharge curve of a RFB to potentially improve the battery capacity and performance.
We develop a multifidelity model for predicting the charge-discharge curve of a RFB.
arXiv Detail & Related papers (2021-06-17T00:49:55Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
Design, analysis, and operation of electric vertical takeoff and landing aircraft (eVTOLs) requires fast and accurate prediction of Li-ion battery performance.
We generate a battery performance and thermal behavior dataset specific to eVTOL duty cycles.
We use this dataset to develop a battery performance and degradation model (Cellfit) which employs physics-informed machine learning.
arXiv Detail & Related papers (2020-07-06T16:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.