Early-Cycle Internal Impedance Enables ML-Based Battery Cycle Life Predictions Across Manufacturers
- URL: http://arxiv.org/abs/2410.05326v1
- Date: Sat, 5 Oct 2024 17:04:25 GMT
- Title: Early-Cycle Internal Impedance Enables ML-Based Battery Cycle Life Predictions Across Manufacturers
- Authors: Tyler Sours, Shivang Agarwal, Marc Cormier, Jordan Crivelli-Decker, Steffen Ridderbusch, Stephen L. Glazier, Connor P. Aiken, Aayush R. Singh, Ang Xiao, Omar Allam,
- Abstract summary: Methods that construct features solely on voltage-capacity profile data typically fail to generalize across cell chemistries.
This study introduces a methodology that combines traditional voltage-capacity features with Direct Current Internal Resistance (DCIR) measurements.
- Score: 2.9117750917060574
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting the end-of-life (EOL) of lithium-ion batteries across different manufacturers presents significant challenges due to variations in electrode materials, manufacturing processes, cell formats, and a lack of generally available data. Methods that construct features solely on voltage-capacity profile data typically fail to generalize across cell chemistries. This study introduces a methodology that combines traditional voltage-capacity features with Direct Current Internal Resistance (DCIR) measurements, enabling more accurate and generalizable EOL predictions. The use of early-cycle DCIR data captures critical degradation mechanisms related to internal resistance growth, enhancing model robustness. Models are shown to successfully predict the number of cycles to EOL for unseen manufacturers of varied electrode composition with a mean absolute error (MAE) of 150 cycles. This cross-manufacturer generalizability reduces the need for extensive new data collection and retraining, enabling manufacturers to optimize new battery designs using existing datasets. Additionally, a novel DCIR-compatible dataset is released as part of ongoing efforts to enrich the growing ecosystem of cycling data and accelerate battery materials development.
Related papers
- Generating Multi-Modal and Multi-Attribute Single-Cell Counts with CFGen [76.02070962797794]
We present Cell Flow for Generation, a flow-based conditional generative model for multi-modal single-cell counts.
Our results suggest improved recovery of crucial biological data characteristics while accounting for novel generative tasks.
arXiv Detail & Related papers (2024-07-16T14:05:03Z) - Optimizing Cycle Life Prediction of Lithium-ion Batteries via a Physics-Informed Model [0.0]
Accurately measuring the cycle lifetime of commercial lithium-ion batteries is crucial for performance and technology development.
We introduce a novel hybrid approach combining a physics-based equation with a self-attention model to predict the cycle lifetimes of commercial lithium iron phosphate graphite cells via early-cycle data.
arXiv Detail & Related papers (2024-04-26T06:06:37Z) - Generating Comprehensive Lithium Battery Charging Data with Generative AI [24.469319419012745]
This study introduces the End of Life (EOL) and Equivalent Cycle Life (ECL) as conditions for generative AI models.
By integrating an embedding layer into the CVAE model, we developed the Refined Conditional Variational Autoencoder (RCVAE)
Through preprocessing data into a quasi-video format, our study achieves an integrated synthesis of electrochemical data, including voltage, current, temperature, and charging capacity.
This method provides users with a comprehensive electrochemical dataset, pioneering a new research domain for the artificial synthesis of lithium battery data.
arXiv Detail & Related papers (2024-04-11T09:08:45Z) - Retrosynthesis prediction enhanced by in-silico reaction data
augmentation [66.5643280109899]
We present RetroWISE, a framework that employs a base model inferred from real paired data to perform in-silico reaction generation and augmentation.
On three benchmark datasets, RetroWISE achieves the best overall performance against state-of-the-art models.
arXiv Detail & Related papers (2024-01-31T07:40:37Z) - Remaining useful life prediction of Lithium-ion batteries using spatio-temporal multimodal attention networks [4.249657064343807]
Lithium-ion batteries are widely used in various applications, including electric vehicles and renewable energy storage.
The prediction of the remaining useful life (RUL) of batteries is crucial for ensuring reliable and efficient operation.
This paper proposes a two-stage RUL prediction scheme for Lithium-ion batteries using a-temporal attention network (ST-MAN)
arXiv Detail & Related papers (2023-10-29T07:32:32Z) - Transfer Learning and Vision Transformer based State-of-Health
prediction of Lithium-Ion Batteries [1.2468700211588883]
Accurately predicting the state of health (SOH) can not only ease the anxiety of users about the battery life but also provide important information for the management of the battery.
This paper presents a prediction method for SOH based on Vision Transformer (ViT) model.
arXiv Detail & Related papers (2022-09-07T16:54:15Z) - Dynaformer: A Deep Learning Model for Ageing-aware Battery Discharge
Prediction [2.670887944566458]
We introduce a novel Transformer-based deep learning architecture which is able to simultaneously infer the ageing state from a limited number of voltage/current samples.
Our experiments show that the trained model is effective for input current profiles of different complexities and is robust to a wide range of degradation levels.
arXiv Detail & Related papers (2022-06-01T15:31:06Z) - On Continual Model Refinement in Out-of-Distribution Data Streams [64.62569873799096]
Real-world natural language processing (NLP) models need to be continually updated to fix the prediction errors in out-of-distribution (OOD) data streams.
Existing continual learning (CL) problem setups cannot cover such a realistic and complex scenario.
We propose a new CL problem formulation dubbed continual model refinement (CMR)
arXiv Detail & Related papers (2022-05-04T11:54:44Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
We propose an enhanced version of the physics-constrained deep neural network (PCDNN) approach to provide high-accuracy voltage predictions.
The ePCDNN can accurately capture the voltage response throughout the charge--discharge cycle, including the tail region of the voltage discharge curve.
arXiv Detail & Related papers (2022-03-03T19:56:24Z) - Principal Component Density Estimation for Scenario Generation Using
Normalizing Flows [62.997667081978825]
We propose a dimensionality-reducing flow layer based on the linear principal component analysis (PCA) that sets up the normalizing flow in a lower-dimensional space.
We train the resulting principal component flow (PCF) on data of PV and wind power generation as well as load demand in Germany in the years 2013 to 2015.
arXiv Detail & Related papers (2021-04-21T08:42:54Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
Design, analysis, and operation of electric vertical takeoff and landing aircraft (eVTOLs) requires fast and accurate prediction of Li-ion battery performance.
We generate a battery performance and thermal behavior dataset specific to eVTOL duty cycles.
We use this dataset to develop a battery performance and degradation model (Cellfit) which employs physics-informed machine learning.
arXiv Detail & Related papers (2020-07-06T16:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.