Machine Learning based prediction of Vanadium Redox Flow Battery temperature rise under different charge-discharge conditions
- URL: http://arxiv.org/abs/2404.17284v1
- Date: Fri, 26 Apr 2024 09:40:23 GMT
- Title: Machine Learning based prediction of Vanadium Redox Flow Battery temperature rise under different charge-discharge conditions
- Authors: Anirudh Narayan D, Akshat Johar, Divye Kalra, Bhavya Ardeshna, Ankur Bhattacharjee,
- Abstract summary: Machine learning (ML) based prediction of Vanadium Redox Flow Battery (VRFB) thermal behavior has been demonstrated for the first time.
XGBoost shows the highest accuracy in prediction of around 99%.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate prediction of battery temperature rise is very essential for designing an efficient thermal management scheme. In this paper, machine learning (ML) based prediction of Vanadium Redox Flow Battery (VRFB) thermal behavior during charge-discharge operation has been demonstrated for the first time. Considering different currents with a specified electrolyte flow rate, the temperature of a kW scale VRFB system is studied through experiments. Three different ML algorithms; Linear Regression (LR), Support Vector Regression (SVR) and Extreme Gradient Boost (XGBoost) have been used for the prediction work. The training and validation of ML algorithms have been done by the practical dataset of a 1kW 6kWh VRFB storage under 40A, 45A, 50A and 60A charge-discharge currents and 10 L min-1 of flow rate. A comparative analysis among the ML algorithms is done in terms of performance metrics such as correlation coefficient (R2), mean absolute error (MAE) and root mean square error (RMSE). It is observed that XGBoost shows the highest accuracy in prediction of around 99%. The ML based prediction results obtained in this work can be very useful for controlling the VRFB temperature rise during operation and act as indicator for further development of an optimized thermal management system.
Related papers
- Calibrating Language Models with Adaptive Temperature Scaling [58.056023173579625]
We introduce Adaptive Temperature Scaling (ATS), a post-hoc calibration method that predicts a temperature scaling parameter for each token prediction.
ATS improves calibration by over 10-50% across three downstream natural language evaluation benchmarks compared to prior calibration methods.
arXiv Detail & Related papers (2024-09-29T22:54:31Z) - Uncertainty-Aware Calibration of a Hot-Wire Anemometer With Gaussian
Process Regression [0.0]
The aim of this work is to overcome the loss of accuracy of a low cost hot-wire anemometer caused by the changes of air temperature.
By performing a calibration of the hot-wire anemometer taking into account air temperature, the wind speed can be estimated for the typical range of ambient temperatures.
arXiv Detail & Related papers (2024-01-16T22:01:24Z) - Pre-insertion resistors temperature prediction based on improved WOA-SVR [3.5738896126578537]
Pre-insertion resistors (PIR) within high-voltage circuit breakers are critical components and warm up by generating Joule heat when an electric current flows through them.
This study combines finite element simulation techniques with Support Vector Regression (SVR) optimized by an Improved Whale Optimization Algorithm (IWOA) approach.
arXiv Detail & Related papers (2024-01-07T14:24:04Z) - A machine learning approach to the prediction of heat-transfer
coefficients in micro-channels [4.724825031148412]
The accurate prediction of the two-phase heat transfer coefficient (HTC) is key to the optimal design and operation of compact heat exchangers.
We use a multi-output Gaussian process regression (GPR) to estimate the HTC in microchannels as a function of the mass flow rate, heat flux, system pressure and channel diameter and length.
arXiv Detail & Related papers (2023-05-28T15:48:01Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - Predicting Defects in Laser Powder Bed Fusion using in-situ Thermal
Imaging Data and Machine Learning [0.0]
Variation in the local thermal history during the laser powder bed fusion process can cause microporosity defects.
In this work, we develop machine learning (ML) models that can use in-situ thermographic data to predict the microporosity of LPBF stainless steel materials.
arXiv Detail & Related papers (2021-12-16T21:25:16Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
The present work aims to construct cheap-to-compute machine learning (ML) models to act as closure equations for predicting the physical properties of alternative fuels.
Those models can be trained using the database from MD simulations and/or experimental measurements in a data-fusion-fidelity approach.
The results show that ML models can predict accurately the fuel properties of a wide range of pressure and temperature conditions.
arXiv Detail & Related papers (2021-10-18T14:43:50Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
Redox flow batteries (RFBs) offer the capability to store large amounts of energy cheaply and efficiently.
There is a need for fast and accurate models of the charge-discharge curve of a RFB to potentially improve the battery capacity and performance.
We develop a multifidelity model for predicting the charge-discharge curve of a RFB.
arXiv Detail & Related papers (2021-06-17T00:49:55Z) - Machine learning pipeline for battery state of health estimation [3.0238880199349834]
We design and evaluate a machine learning pipeline for estimation of battery capacity fade.
The pipeline estimates battery SOH with an associated confidence interval by using two parametric and two non-parametric algorithms.
When deployed on cells operated under the fast-charging protocol, the best model achieves a root mean squared percent error of 0.45%.
arXiv Detail & Related papers (2021-02-01T13:50:56Z) - Physics-Informed Gaussian Process Regression for Probabilistic States
Estimation and Forecasting in Power Grids [67.72249211312723]
Real-time state estimation and forecasting is critical for efficient operation of power grids.
PhI-GPR is presented and used for forecasting and estimating the phase angle, angular speed, and wind mechanical power of a three-generator power grid system.
We demonstrate that the proposed PhI-GPR method can accurately forecast and estimate both observed and unobserved states.
arXiv Detail & Related papers (2020-10-09T14:18:31Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
Design, analysis, and operation of electric vertical takeoff and landing aircraft (eVTOLs) requires fast and accurate prediction of Li-ion battery performance.
We generate a battery performance and thermal behavior dataset specific to eVTOL duty cycles.
We use this dataset to develop a battery performance and degradation model (Cellfit) which employs physics-informed machine learning.
arXiv Detail & Related papers (2020-07-06T16:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.