論文の概要: Dense Road Surface Grip Map Prediction from Multimodal Image Data
- arxiv url: http://arxiv.org/abs/2404.17324v1
- Date: Fri, 26 Apr 2024 11:10:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 13:24:47.105934
- Title: Dense Road Surface Grip Map Prediction from Multimodal Image Data
- Title(参考訳): マルチモーダル画像データによる高密度道路表面グリップマップの予測
- Authors: Jyri Maanpää, Julius Pesonen, Heikki Hyyti, Iaroslav Melekhov, Juho Kannala, Petri Manninen, Antero Kukko, Juha Hyyppä,
- Abstract要約: 後処理型マルチモーダルセンサデータに基づいて,車両前方の領域から高密度グリップマップを推定する手法を提案する。
我々は、融合RGBカメラ、サーマルカメラ、LiDAR反射率画像から画素ワイドグリップ値を予測するために畳み込みニューラルネットワークを訓練した。
- 参考スコア(独自算出の注目度): 7.584488044752369
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Slippery road weather conditions are prevalent in many regions and cause a regular risk for traffic. Still, there has been less research on how autonomous vehicles could detect slippery driving conditions on the road to drive safely. In this work, we propose a method to predict a dense grip map from the area in front of the car, based on postprocessed multimodal sensor data. We trained a convolutional neural network to predict pixelwise grip values from fused RGB camera, thermal camera, and LiDAR reflectance images, based on weakly supervised ground truth from an optical road weather sensor. The experiments show that it is possible to predict dense grip values with good accuracy from the used data modalities as the produced grip map follows both ground truth measurements and local weather conditions, such as snowy areas on the road. The model using only the RGB camera or LiDAR reflectance modality provided good baseline results for grip prediction accuracy while using models fusing the RGB camera, thermal camera, and LiDAR modalities improved the grip predictions significantly.
- Abstract(参考訳): 多くの地域では、滑りやすい道路の気象条件が一般的であり、交通のリスクを定期的に引き起こしている。
それでも、自動運転車が安全運転のために道路上の滑りやすい運転条件をどうやって検出できるかは研究されていない。
本研究では, 後処理型マルチモーダルセンサデータに基づいて, 車両前方の領域から高密度グリップマップを推定する手法を提案する。
コンボリューションニューラルネットワークを用いて,光路気象センサの弱教師付き地上真実に基づいて,融合RGBカメラ,サーマルカメラ,LiDAR反射率画像から画素ワイドグリップ値を予測する。
この実験により, 道路上の積雪地帯など, 地中気象条件と地中気象条件の両方に従って, 得られたグリップマップを用いて, 使用済みデータモダリティから, 密集グリップ値を精度良く予測できることが示唆された。
RGBカメラおよびLiDAR反射率モードのみを用いたモデルは、RGBカメラとサーマルカメラとLiDARモダリティを融合させたモデルを用いてグリップ予測精度を向上させるとともに、グリップ予測に優れたベースライン結果を与えた。
関連論文リスト
- Digital twins to alleviate the need for real field data in vision-based vehicle speed detection systems [0.9899633398596672]
正確な視覚に基づく速度推定は、レーダーやLiDARに基づく従来の手法よりもコスト効率が高い。
ディープラーニングのアプローチは、利用可能なデータがないため、このコンテキストでは極めて限定的です。
本研究では,CARLAシミュレータを用いたデジタルツインを用いて,特定の実世界のカメラの大規模なデータセットを生成することを提案する。
論文 参考訳(メタデータ) (2024-07-11T10:41:20Z) - Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
本稿では,アクティブレーダイメージア用に設計されたニューラルシーン再構成手法であるRadar Fieldsを紹介する。
提案手法では,暗黙的ニューラルジオメトリとリフレクタンスモデルを用いて,暗黙的な物理インフォームドセンサモデルを構築し,生のレーダ測定を直接合成する。
本研究では,密集した車両やインフラを備えた都市景観を含む,多様な屋外シナリオにおける手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-05-07T20:44:48Z) - Lightweight Regression Model with Prediction Interval Estimation for Computer Vision-based Winter Road Surface Condition Monitoring [0.4972323953932129]
本稿では,カメラ画像から路面摩擦特性を推定できるディープラーニング回帰モデルSIWNetを提案する。
SIWNetはアーキテクチャに不確実性推定機構を含めることで、技術の状態を拡張している。
モデルは、SeeingThroughFogデータセットでトレーニングされ、テストされた。
論文 参考訳(メタデータ) (2023-10-02T06:33:06Z) - LOPR: Latent Occupancy PRediction using Generative Models [49.15687400958916]
LiDARの生成した占有グリッドマップ(L-OGM)は、頑丈な鳥の視線シーンを表現している。
本稿では,学習空間内での表現学習と予測という,占有率予測を分離する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-03T22:04:00Z) - LiDAR Snowfall Simulation for Robust 3D Object Detection [116.10039516404743]
そこで本研究では,降雪の影響をシミュレーションする物理的手法を提案する。
本手法では,LiDARの各線に対して2次元空間の雪粒子をサンプリングし,誘導幾何を用いて各LiDAR線の測定を修正した。
我々はシミュレーションを用いて、部分的に合成された雪のLiDARデータを生成し、これらのデータを利用して、降雪に頑健な3次元物体検出モデルを訓練する。
論文 参考訳(メタデータ) (2022-03-28T21:48:26Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - All-Weather Object Recognition Using Radar and Infrared Sensing [1.7513645771137178]
この論文は、物体を認識するために、長波偏光赤外線(IR)画像とイメージングレーダに基づく新しいセンシング開発を探求する。
まず、偏光赤外データを用いたストークスパラメータに基づく手法を開発し、深層ニューラルネットワークを用いた車両の認識を行った。
第2に、低THzレーダセンサで捉えたパワースペクトルのみを用いて、制御されたシナリオで物体認識を行う可能性について検討した。
最後に、悪天候下で車両を検出するレーダーロバスト性を示す多くの異なる気象シナリオを備えた、"ワイルド"に新しい大規模なデータセットを作成しました。
論文 参考訳(メタデータ) (2020-10-30T14:16:39Z) - Multimodal End-to-End Learning for Autonomous Steering in Adverse Road
and Weather Conditions [0.0]
自動ステアリングにおけるエンド・ツー・エンドの学習に関するこれまでの研究を,マルチモーダルデータを用いた有害な実生活環境での運用に拡張する。
道路および気象条件下で28時間の運転データを収集し,車両のハンドル角度を予測するために畳み込みニューラルネットワークを訓練した。
論文 参考訳(メタデータ) (2020-10-28T12:38:41Z) - Testing the Safety of Self-driving Vehicles by Simulating Perception and
Prediction [88.0416857308144]
センサシミュレーションは高価であり,領域ギャップが大きいため,センサシミュレーションに代わる方法を提案する。
我々は、自動運転車の知覚と予測システムの出力を直接シミュレートし、現実的な動き計画テストを可能にする。
論文 参考訳(メタデータ) (2020-08-13T17:20:02Z) - Drone-based RGB-Infrared Cross-Modality Vehicle Detection via
Uncertainty-Aware Learning [59.19469551774703]
ドローンによる車両検出は、空中画像中の車両の位置とカテゴリーを見つけることを目的としている。
我々はDroneVehicleと呼ばれる大規模ドローンベースのRGB赤外線車両検出データセットを構築した。
私たちのDroneVehicleは28,439RGBの赤外線画像を収集し、都市道路、住宅地、駐車場、その他のシナリオを昼から夜までカバーしています。
論文 参考訳(メタデータ) (2020-03-05T05:29:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。