論文の概要: Converting High-Performance and Low-Latency SNNs through Explicit Modelling of Residual Error in ANNs
- arxiv url: http://arxiv.org/abs/2404.17456v1
- Date: Fri, 26 Apr 2024 14:50:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 12:55:05.093591
- Title: Converting High-Performance and Low-Latency SNNs through Explicit Modelling of Residual Error in ANNs
- Title(参考訳): ANNにおける残差の明示的モデリングによる高性能・低レイテンシSNNの変換
- Authors: Zhipeng Huang, Jianhao Ding, Zhiyu Pan, Haoran Li, Ying Fang, Zhaofei Yu, Jian K. Liu,
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、そのエネルギー効率とニューロモルフィックチップの優れた効果のために関心を集めている。
ディープSNNの実装における主要なアプローチの1つは、ANN-SNN変換である。
本稿では,残差を付加雑音として明示的にモデル化した新しい手法を提案する。
- 参考スコア(独自算出の注目度): 27.46147049872907
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spiking neural networks (SNNs) have garnered interest due to their energy efficiency and superior effectiveness on neuromorphic chips compared with traditional artificial neural networks (ANNs). One of the mainstream approaches to implementing deep SNNs is the ANN-SNN conversion, which integrates the efficient training strategy of ANNs with the energy-saving potential and fast inference capability of SNNs. However, under extreme low-latency conditions, the existing conversion theory suggests that the problem of misrepresentation of residual membrane potentials in SNNs, i.e., the inability of IF neurons with a reset-by-subtraction mechanism to respond to residual membrane potentials beyond the range from resting potential to threshold, leads to a performance gap in the converted SNNs compared to the original ANNs. This severely limits the possibility of practical application of SNNs on delay-sensitive edge devices. Existing conversion methods addressing this problem usually involve modifying the state of the conversion spiking neurons. However, these methods do not consider their adaptability and compatibility with neuromorphic chips. We propose a new approach based on explicit modeling of residual errors as additive noise. The noise is incorporated into the activation function of the source ANN, which effectively reduces the residual error. Our experiments on the CIFAR10/100 dataset verify that our approach exceeds the prevailing ANN-SNN conversion methods and directly trained SNNs concerning accuracy and the required time steps. Overall, our method provides new ideas for improving SNN performance under ultra-low-latency conditions and is expected to promote practical neuromorphic hardware applications for further development.
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)は、従来の人工ニューラルネットワーク(ANN)と比較して、エネルギー効率とニューロモルフィックチップの優れた有効性のために関心を集めている。
ディープSNNの実装における主要なアプローチの1つは、ANNの効率的なトレーニング戦略とSNNの省エネポテンシャルと高速推論能力を統合するANN-SNN変換である。
しかし、極端に低遅延条件下では、既存の変換理論は、SNNの残留膜電位の誤表現の問題、すなわち、リセット・バイ・サブトラクション機構を持つIFニューロンが残留膜電位に反応できないことが、元のANNと比較して変換されたSNNの性能差をもたらすことを示唆している。
これにより、遅延感度エッジデバイスにSNNを実用的に適用する可能性を大幅に制限する。
この問題に対処する既存の変換方法は、通常、変換スパイクニューロンの状態を変更することである。
しかし、これらの手法はニューロモルフィックチップへの適応性と適合性を考慮していない。
本稿では,残差を付加雑音として明示的にモデル化した新しい手法を提案する。
音源ANNの活性化機能にノイズを組み込み、残差を効果的に低減する。
CIFAR10/100データセットを用いた実験により,提案手法がANN-SNN変換法とSNNを直接訓練し,精度と必要な時間ステップについて検証した。
提案手法は,超低レイテンシ条件下でのSNN性能向上のための新しいアイデアを提供するとともに,さらなる発展に向けた実用的なニューロモルフィックハードウェア応用を促進することが期待されている。
関連論文リスト
- Training-free Conversion of Pretrained ANNs to SNNs for Low-Power and High-Performance Applications [23.502136316777058]
人工ニューラルネットワーク(ANN)の代替としてスパイキングニューラルネットワーク(SNN)が登場した
SNNの既存の教師付き学習アルゴリズムは、ANNのアルゴリズムよりもはるかに多くのメモリと時間を必要とする。
提案手法は,事前学習したANNモデルを,追加訓練を伴わずに,高性能なSNNに変換する。
論文 参考訳(メタデータ) (2024-09-05T09:14:44Z) - When Bio-Inspired Computing meets Deep Learning: Low-Latency, Accurate,
& Energy-Efficient Spiking Neural Networks from Artificial Neural Networks [22.721987637571306]
Spiking Neural Networks (SNN) は畳み込みニューラルネットワーク (CNN) に匹敵する精度を示している
ANN-to-SNN変換は、最近、複雑な画像認識タスクにおける最先端(SOTA)テスト精度に近いディープSNNの開発において、大きな注目を集めている。
提案手法は,SOTA変換手法で必要となる時間ステップを指数的に減少させる新しいANN-to-SNN変換フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-12T00:10:45Z) - Fully Spiking Denoising Diffusion Implicit Models [61.32076130121347]
スパイキングニューラルネットワーク(SNN)は、超高速のニューロモルフィックデバイス上で走る能力のため、かなりの注目を集めている。
本研究では,SNN内で拡散モデルを構築するために,拡散暗黙モデル (FSDDIM) を完全にスパイクする新しい手法を提案する。
提案手法は,最先端の完全スパイク生成モデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-12-04T09:07:09Z) - Adversarially Robust Spiking Neural Networks Through Conversion [16.2319630026996]
スパイキングニューラルネットワーク(SNN)は、さまざまな人工知能ニューラルネットワーク(ANN)ベースのAIアプリケーションに対して、エネルギー効率のよい代替手段を提供する。
SNNによるニューロモルフィックコンピューティングの進歩がアプリケーションでの利用を拡大するにつれ、SNNの対角的堅牢性の問題はより顕著になる。
論文 参考訳(メタデータ) (2023-11-15T08:33:46Z) - Skip Connections in Spiking Neural Networks: An Analysis of Their Effect
on Network Training [0.8602553195689513]
従来の人工ニューラルネットワーク(ANN)の代替として、スパイキングニューラルネットワーク(SNN)が注目を集めている。
本稿では,SNNにおけるスキップ接続の影響について検討し,ANNからSNNへのモデル適応を行うハイパーパラメータ最適化手法を提案する。
本研究では,SNNの位置,タイプ,回数を最適化することで,SNNの精度と効率を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-03-23T07:57:32Z) - Spiking Neural Network Decision Feedback Equalization [70.3497683558609]
決定フィードバック等化器(DFE)に似たフィードバック構造を持つSNNベースの等化器を提案する。
提案手法は,3種類の模範チャネルに対して,従来の線形等化器よりも明らかに優れていることを示す。
決定フィードバック構造を持つSNNは、競合エネルギー効率の良いトランシーバへのパスを可能にする。
論文 参考訳(メタデータ) (2022-11-09T09:19:15Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Optimal Conversion of Conventional Artificial Neural Networks to Spiking
Neural Networks [0.0]
spiking neural networks (snns) は生物学に触発されたニューラルネットワーク (anns) である。
しきい値バランスとソフトリセット機構を組み合わせることで、重みをターゲットSNNに転送する新しい戦略パイプラインを提案する。
提案手法は,SNNのエネルギーとメモリの制限によるサポートを向上し,組込みプラットフォームに組み込むことが期待できる。
論文 参考訳(メタデータ) (2021-02-28T12:04:22Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
スパイキングニューラルネットワーク(英: Spiking Neural Networks、SNN)は、神経型ネットワークの一種である。
SNNはスパースであり、重量はごくわずかであり、通常、より電力集約的な乗算および累積演算の代わりに追加操作のみを使用する。
本研究では,TTFS符号化ニューロモルフィックシステムの限界を克服することを目的としている。
論文 参考訳(メタデータ) (2020-06-03T15:55:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。