Momentum exchange method for quantum Boltzmann methods
- URL: http://arxiv.org/abs/2404.17618v1
- Date: Fri, 26 Apr 2024 12:31:46 GMT
- Title: Momentum exchange method for quantum Boltzmann methods
- Authors: Merel A. Schalkers, Matthias Möller,
- Abstract summary: This paper marks the first quantum method proposed to efficiently calculate quantities of interest (QoIs) from a state vector representing the flow field.
In particular, we propose a method to calculate the force acting on an object immersed in the fluid using a quantum version of the momentum exchange method (MEM) that is commonly used in lattice Boltzmann methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The past years have seen a surge in quantum algorithms for computational fluid dynamics (CFD). These algorithms have in common that whilst promising a speed-up in the performance of the algorithm, no specific method of measurement has been suggested. This means that while the algorithms presented in the literature may be promising methods for creating the quantum state that represents the final flow field, an efficient measurement strategy is not available. This paper marks the first quantum method proposed to efficiently calculate quantities of interest (QoIs) from a state vector representing the flow field. In particular, we propose a method to calculate the force acting on an object immersed in the fluid using a quantum version of the momentum exchange method (MEM) that is commonly used in lattice Boltzmann methods to determine the drag and lift coefficients. In order to achieve this we furthermore give a scheme that implements bounce back boundary conditions on a quantum computer, as those are the boundary conditions the momentum exchange method is designed for.
Related papers
- Evaluation of phase shifts for non-relativistic elastic scattering using quantum computers [39.58317527488534]
This work reports the development of an algorithm that makes it possible to obtain phase shifts for generic non-relativistic elastic scattering processes on a quantum computer.
arXiv Detail & Related papers (2024-07-04T21:11:05Z) - Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
We propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers.
Our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28% and 57% on average.
arXiv Detail & Related papers (2024-06-17T14:10:10Z) - Quantum state preparation for a velocity field based on the spherical Clebsch wave function [34.47707424032449]
We propose a method for preparing the quantum state for a given velocity field via the spherical Clebsch wave function (SCWF)
We employ the variational quantum algorithm to transform the target velocity field into the SCWF and its corresponding discrete quantum state.
Our method is able to capture critical flow features like sources, sinks, and saddle points.
arXiv Detail & Related papers (2024-06-07T05:41:17Z) - A quantum implementation of high-order power method for estimating geometric entanglement of pure states [39.58317527488534]
This work presents a quantum adaptation of the iterative higher-order power method for estimating the geometric measure of entanglement of multi-qubit pure states.
It is executable on current (hybrid) quantum hardware and does not depend on quantum memory.
We study the effect of noise on the algorithm using a simple theoretical model based on the standard depolarising channel.
arXiv Detail & Related papers (2024-05-29T14:40:24Z) - Unitary Quantum Algorithm for the Lattice-Boltzmann Method [0.0]
We present a quantum algorithm for computational fluid dynamics based on the Lattice-Boltzmann method.
Our results demonstrate that our quantum algorithm captures non-linearity.
arXiv Detail & Related papers (2024-05-22T07:03:54Z) - Adaptive measurement strategy for quantum subspace methods [0.0]
We propose an adaptive measurement optimization method that is useful for the quantum subspace methods.
The proposed method first determines the measurement protocol for classically simulatable states, and then adaptively updates the protocol of quantum subspace expansion.
As a numerical demonstration, we have shown for excited-state simulation of molecules that we are able to reduce the number of measurements by an order of magnitude.
arXiv Detail & Related papers (2023-11-14T04:00:59Z) - Variational Quantum Solutions to the Advection-Diffusion Equation for
Applications in Fluid Dynamics [0.0]
We present one method to perform fluid dynamics calculations that takes advantage of quantum computing.
We find that reliable solutions of the equation can be obtained on even the noisy quantum computers available today.
arXiv Detail & Related papers (2022-08-24T21:29:46Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Module for arbitrary controlled rotation in gate-based quantum
algorithms [4.226630104506498]
We implement arbitrary controlled rotation of quantum algorithms with a proposed modular method.
The proposed method can be applied to more general quantum machine learning algorithms.
arXiv Detail & Related papers (2021-07-17T03:10:45Z) - Quantum algorithm for the Navier Stokes equations by using the
streamfunction vorticity formulation and the lattice Boltzmann method [0.0]
A new algorithm for solving the Navier-Stokes equations (NSE) on a quantum device is presented.
For the fluid flow equations the stream function-vorticity formulation is adopted, while the lattice Boltzmann method (LBM) is utilized for solving the corresponding system of equations numerically for one time step.
arXiv Detail & Related papers (2021-03-05T17:07:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.