Quantum state preparation for a velocity field based on the spherical Clebsch wave function
- URL: http://arxiv.org/abs/2406.04652v1
- Date: Fri, 7 Jun 2024 05:41:17 GMT
- Title: Quantum state preparation for a velocity field based on the spherical Clebsch wave function
- Authors: Hao Su, Shiying Xiong, Yue Yang,
- Abstract summary: We propose a method for preparing the quantum state for a given velocity field via the spherical Clebsch wave function (SCWF)
We employ the variational quantum algorithm to transform the target velocity field into the SCWF and its corresponding discrete quantum state.
Our method is able to capture critical flow features like sources, sinks, and saddle points.
- Score: 34.47707424032449
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We propose a method for preparing the quantum state for a given velocity field, e.g., in fluid dynamics, via the spherical Clebsch wave function (SCWF). Using the pointwise normalization constraint for the SCWF, we develop a variational ansatz comprising parameterized controlled rotation gates. Employing the variational quantum algorithm, we iteratively optimize the circuit parameters to transform the target velocity field into the SCWF and its corresponding discrete quantum state, enabling subsequent quantum simulation of fluid dynamics. Validations for one- and two-dimensional flow fields confirm the accuracy and robustness of our method, emphasizing its effectiveness in handling multiscale and multidimensional velocity fields. Our method is able to capture critical flow features like sources, sinks, and saddle points. Furthermore, it enables the generation of SCWFs for various vector fields, which can then be applied in quantum simulations through SCWF evolution.
Related papers
- Application of Langevin Dynamics to Advance the Quantum Natural Gradient Optimization Algorithm [47.47843839099175]
A Quantum Natural Gradient (QNG) algorithm for optimization of variational quantum circuits has been proposed recently.
In this study, we employ the Langevin equation with a QNG force to demonstrate that its discrete-time solution gives a generalized form, which we call Momentum-QNG.
arXiv Detail & Related papers (2024-09-03T15:21:16Z) - Exploring quantum localization with machine learning [39.58317527488534]
We introduce an efficient neural network (NN) architecture for classifying wave functions in terms of their localization.
Our approach integrates a versatile quantum phase space parametrization leading to a custom 'quantum' NN, with the pattern recognition capabilities of a modified convolutional model.
arXiv Detail & Related papers (2024-06-01T08:50:26Z) - Unveiling quantum phase transitions from traps in variational quantum algorithms [0.0]
We introduce a hybrid algorithm that combines quantum optimization with classical machine learning.
We use LASSO for identifying conventional phase transitions and the Transformer model for topological transitions.
Our protocol significantly enhances efficiency and precision, opening new avenues in the integration of quantum computing and machine learning.
arXiv Detail & Related papers (2024-05-14T09:01:41Z) - Real-time error mitigation for variational optimization on quantum
hardware [45.935798913942904]
We define a Real Time Quantum Error Mitigation (RTQEM) algorithm to assist in fitting functions on quantum chips with VQCs.
Our RTQEM routine can enhance VQCs' trainability by reducing the corruption of the loss function.
arXiv Detail & Related papers (2023-11-09T19:00:01Z) - Quantum collision circuit, quantum invariants and quantum phase estimation procedure for fluid dynamic lattice gas automata [0.0]
We develop a quantum algorithm that allows for the simulation of fluid dynamic LGCA on a quantum computer.
We also develop a phase estimation procedure for detecting quantities of interest such as mass and momentum, avoiding reinitialization of the cell.
arXiv Detail & Related papers (2023-10-11T10:22:07Z) - Variational Quantum Algorithms for Simulation of Lindblad Dynamics [0.0]
We introduce a variational hybrid classical-quantum algorithm to simulate the Lindblad master equation and its adjoint for time-evolving Markovian open quantum systems and quantum observables.
We design and optimize low-depth variational quantum circuits that efficiently capture the unitary and non-unitary dynamics of the solutions.
arXiv Detail & Related papers (2023-05-04T13:25:44Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Adaptive Variational Quantum Dynamics Simulations [3.629716738568079]
We propose a general-purpose, self-adaptive approach to construct variational wavefunction ans"atze for highly accurate quantum dynamics simulations.
We apply this approach to the integrable Lieb-Schultz-Mattis spin chain and the nonintegrable mixed-field Ising model.
We envision that a wide range of dynamical simulations of quantum many-body systems on near-term quantum computing devices will be made possible through the AVQDS framework.
arXiv Detail & Related papers (2020-11-01T20:21:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.