論文の概要: Validating Deep Learning Weather Forecast Models on Recent High-Impact Extreme Events
- arxiv url: http://arxiv.org/abs/2404.17652v2
- Date: Thu, 23 Jan 2025 15:06:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:55:39.318964
- Title: Validating Deep Learning Weather Forecast Models on Recent High-Impact Extreme Events
- Title(参考訳): 最近の高強度極端事象に対する深層学習天気予報モデルの検証
- Authors: Olivier C. Pasche, Jonathan Wider, Zhongwei Zhang, Jakob Zscheischler, Sebastian Engelke,
- Abstract要約: 機械学習天気予報モデルとECMWFの高分解能予測システムを比較した。
我々は,ML気象予報モデルが,記録破りの太平洋北西部熱波上でHRESと類似の精度を局所的に達成していることを発見した。
さらに、HRESとMLモデルのエラーが、そのイベントにどのように構築されるかという構造的な違いも強調します。
- 参考スコア(独自算出の注目度): 0.1747623282473278
- License:
- Abstract: The forecast accuracy of machine learning (ML) weather prediction models is improving rapidly, leading many to speak of a "second revolution in weather forecasting". With numerous methods being developed and limited physical guarantees offered by ML models, there is a critical need for a comprehensive evaluation of these emerging techniques. While this need has been partly fulfilled by benchmark datasets, they provide little information on rare and impactful extreme events or on compound impact metrics, for which model accuracy might degrade due to misrepresented dependencies between variables. To address these issues, we compare ML weather prediction models (GraphCast, PanguWeather, and FourCastNet) and ECMWF's high-resolution forecast system (HRES) in three case studies: the 2021 Pacific Northwest heatwave, the 2023 South Asian humid heatwave, and the North American winter storm in 2021. We find that ML weather prediction models locally achieve similar accuracy to HRES on the record-shattering Pacific Northwest heatwave but underperform when aggregated over space and time. However, they forecast the compound winter storm substantially better. We also highlight structural differences in how the errors of HRES and the ML models build up to that event. The ML forecasts lack important variables for a detailed assessment of the health risks of the 2023 humid heatwave. Using a possible substitute variable, prediction errors show spatial patterns with the highest danger levels over Bangladesh being underestimated by the ML models. Generally, case-study-driven, impact-centric evaluation can complement existing research, increase public trust, and aid in developing reliable ML weather prediction models.
- Abstract(参考訳): 機械学習(ML)天気予報モデルの予測精度は急速に向上しており、多くの人々が「天気予報の第2次革命」と発言している。
多くの手法が開発され、MLモデルによって提供される物理的な保証が限られているため、これらの新興技術の包括的な評価が不可欠である。
このニーズは、ベンチマークデータセットによって部分的に満たされているが、まれで影響の大きい極端なイベントや、変数間の依存関係が誤って表現されているため、モデル精度が低下する可能性のある複合インパクトメトリクスについてはほとんど情報を提供していない。
これらの問題に対処するため、2021年の太平洋太平洋熱波、2023年の南アジア湿潤熱波、2021年の北米冬の嵐の3つのケーススタディにおいて、ML天気予報モデル(GraphCast、PanguWeather、FourCastNet)とECMWFの高解像度予報システム(HRES)を比較した。
ML気象予報モデルは,記録破りの太平洋北西部熱波でHRESと類似の精度を局所的に達成するが,空間と時間で集約すると性能が低下することがわかった。
しかし、彼らは複雑な冬の嵐をかなり良く予測した。
さらに、HRESとMLモデルのエラーが、そのイベントにどのように構築されるかという構造的な違いも強調します。
ML予測は、2023年の湿潤熱波の健康リスクを詳細に評価するために重要な変数を欠いている。
代替変数の候補を用いて、予測誤差は、MLモデルによって過小評価されているバングラデシュの危険レベルが最も高い空間パターンを示す。
一般的に、ケーススタディ駆動のインパクト中心の評価は、既存の研究を補完し、公衆信頼を高め、信頼性の高いML天気予報モデルの開発を支援することができる。
関連論文リスト
- Machine learning models for daily rainfall forecasting in Northern Tropical Africa using tropical wave predictors [0.0]
数値気象予報(NWP)モデルは、北熱帯アフリカにおけるより単純な気候学に基づく降水予測と比較すると性能が劣ることが多い。
本研究では,ガンマ回帰モデルと熱帯波(TW)で学習した畳み込みニューラルネットワーク(CNN)の2つの機械学習モデルを用いて,7~9月のモンスーンシーズンの日降雨を予測する。
論文 参考訳(メタデータ) (2024-08-29T08:36:22Z) - Leveraging data-driven weather models for improving numerical weather prediction skill through large-scale spectral nudging [1.747339718564314]
本研究は,気象予測に対する物理学的アプローチとAI的アプローチの相対的強みと弱みについて述べる。
GEM予測された大規模状態変数をGraphCast予測に対してスペクトル的に評価するハイブリッドNWP-AIシステムを提案する。
その結果,このハイブリッド手法は,GEMモデルの予測能力を高めるために,GraphCastの強みを活用できることが示唆された。
論文 参考訳(メタデータ) (2024-07-08T16:39:25Z) - Uncertainty quantification for data-driven weather models [0.0]
本研究では,現在最先端の決定論的データ駆動気象モデルであるPangu-Weatherから確率的天気予報を生成するための不確実性定量化手法について検討・比較する。
具体的には,摂動によるアンサンブル予測を初期条件と比較し,予測の不確実性を定量化する手法を提案する。
欧州における選択された気象変数の中距離予測のケーススタディにおいて,不確実な定量化手法を用いてパング・ウェザーモデルを用いて得られた確率的予測は,有望な結果を示す。
論文 参考訳(メタデータ) (2024-03-20T10:07:51Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - SEEDS: Emulation of Weather Forecast Ensembles with Diffusion Models [13.331224394143117]
不確かさの定量化は意思決定に不可欠である。
天気予報の不確実性を表す主要なアプローチは、予測の集合を生成することです。
本稿では,これらの予測を歴史的データから学習した深部生成拡散モデルを用いてエミュレートし,計算コストを補正することを提案する。
論文 参考訳(メタデータ) (2023-06-24T22:00:06Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
我々は、再分析データから直接トレーニングできる「GraphCast」と呼ばれる機械学習ベースの手法を導入する。
全世界で10日以上、0.25度で、数百の気象変動を1分以内で予測する。
我々は,GraphCastが1380の検証対象の90%において,最も正確な運用決定システムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-12-24T18:15:39Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
我々は,世界天気予報を迅速かつ高精度に予測するためのディープラーニングベースのシステムであるPangu-Weatherを紹介する。
初めてAIベースの手法が、最先端の数値天気予報法(NWP)を精度で上回った。
Pangu-Weatherは、極端な天気予報や大規模なアンサンブル予測など、幅広い下流予測シナリオをサポートしている。
論文 参考訳(メタデータ) (2022-11-03T17:19:43Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。