論文の概要: PLAYER*: Enhancing LLM-based Multi-Agent Communication and Interaction in Murder Mystery Games
- arxiv url: http://arxiv.org/abs/2404.17662v2
- Date: Mon, 17 Jun 2024 12:39:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 04:48:05.712590
- Title: PLAYER*: Enhancing LLM-based Multi-Agent Communication and Interaction in Murder Mystery Games
- Title(参考訳): PLAYER*:殺人ミステリーゲームにおけるLLMに基づくマルチエージェントコミュニケーションとインタラクションの強化
- Authors: Qinglin Zhu, Runcong Zhao, Jinhua Du, Lin Gui, Yulan He,
- Abstract要約: PLAYER*は,任意のサンプリングベースプランナと質問駆動検索フレームワークを用いて,Murder Mystery Games(MMG)のパス計画を強化する。
エージェントに一連のセンサーを装備することで、PLAYER*は事前に定義された質問を不要にし、エージェントが複雑な社会的相互作用をナビゲートすることを可能にする。
また,複数問合せを用いた定量評価手法を導入し,1,482問問問答対を含むデータセットWellPlayを提案する。
- 参考スコア(独自算出の注目度): 18.383262467079078
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose PLAYER*, a novel framework that addresses the limitations of existing agent-based approaches built on Large Language Models (LLMs) in handling complex questions and understanding interpersonal relationships in dynamic environments. PLAYER* enhances path planning in Murder Mystery Games (MMGs) using an anytime sampling-based planner and a questioning-driven search framework. By equipping agents with a set of sensors, PLAYER* eliminates the need for pre-defined questions and enables agents to navigate complex social interactions. We additionally make a contribution by introducing a quantifiable evaluation method using multiple-choice questions and present WellPlay, a dataset containing 1,482 question-answer pairs. Experimental results demonstrate PLAYER*'s superiority over existing multi-agent methods, enhancing the generalisability and adaptability of agents in MMGs and paving the way for more effective multi-agent interactions.
- Abstract(参考訳): 複雑な問題に対処し、動的環境における対人関係を理解する上で、LLM(Large Language Models)上に構築された既存のエージェントベースのアプローチの限界に対処する新しいフレームワークPLAYER*を提案する。
PLAYER*は,任意のサンプリングベースプランナと質問駆動検索フレームワークを用いて,Murder Mystery Games(MMG)のパス計画を強化する。
エージェントに一連のセンサーを装備することで、PLAYER*は事前に定義された質問を不要にし、エージェントが複雑な社会的相互作用をナビゲートすることを可能にする。
また,複数問合せを用いた定量評価手法を導入し,1,482問問問答対を含むデータセットWellPlayを提案する。
実験の結果、PLAYER*は既存のマルチエージェント法よりも優れており、MMGにおけるエージェントの汎用性と適応性を高め、より効果的なマルチエージェントインタラクションの道を開いた。
関連論文リスト
- Multi-Agent Large Language Models for Conversational Task-Solving [0.0]
対話型タスク解決における新たな主人公として,マルチエージェントシステムが誕生する。
複雑さの異なるタスク間で、マルチエージェントの議論がどのように機能するかは、いまだ不明である。
2022年から2024年までの20のマルチエージェント研究の分類について提案する。
論文 参考訳(メタデータ) (2024-10-30T11:38:13Z) - SWE-Search: Enhancing Software Agents with Monte Carlo Tree Search and Iterative Refinement [18.84439000902905]
SWE-Searchは、MCTS(Monte Carlo Tree Search)と自己改善機構を統合し、ソフトウェアエージェントのパフォーマンスを向上させるマルチエージェントフレームワークである。
本研究は,複雑でダイナミックなソフトウェア工学環境において,エージェント推論と計画を強化する自己評価型検索技術の可能性を強調した。
論文 参考訳(メタデータ) (2024-10-26T22:45:56Z) - AgentSense: Benchmarking Social Intelligence of Language Agents through Interactive Scenarios [38.878966229688054]
本稿では,対話型シナリオを通して言語エージェントのソーシャルインテリジェンスをベンチマークするAgensSenseを紹介する。
ドラマティック理論に基づいて、エージェントセンスは、広範なスクリプトから構築された1,225の多様な社会的シナリオを作成するためにボトムアップアプローチを採用している。
我々はERG理論を用いて目標を分析し、包括的な実験を行う。
以上の結果から,LPMは複雑な社会シナリオ,特に高レベルの成長ニーズにおいて,目標達成に苦慮していることが明らかとなった。
論文 参考訳(メタデータ) (2024-10-25T07:04:16Z) - A Survey on Complex Tasks for Goal-Directed Interactive Agents [60.53915548970061]
この調査は、目標指向の対話エージェントを評価するための、関連するタスクと環境をコンパイルする。
関連リソースの最新のコンパイルは、プロジェクトのWebサイトにある。
論文 参考訳(メタデータ) (2024-09-27T08:17:53Z) - Enhancing Heterogeneous Multi-Agent Cooperation in Decentralized MARL via GNN-driven Intrinsic Rewards [1.179778723980276]
MARL(Multi-agent Reinforcement Learning)は、シーケンシャルな意思決定と制御タスクの鍵となるフレームワークである。
これらのシステムを現実のシナリオに展開するには、分散トレーニング、多様なエージェントセット、そして頻繁な環境報酬信号から学ぶ必要がある。
我々は,新しいグラフニューラルネットワーク(GNN)に基づく本質的なモチベーションを利用して,異種エージェントポリシーの学習を容易にするCoHetアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-12T21:38:40Z) - Efficient Adaptation in Mixed-Motive Environments via Hierarchical Opponent Modeling and Planning [51.52387511006586]
本稿では,HOP(Hierarchical Opponent Modeling and Planning)を提案する。
HOPは階層的に2つのモジュールから構成される: 相手の目標を推論し、対応する目標条件のポリシーを学ぶ、反対モデリングモジュール。
HOPは、さまざまな未確認エージェントと相互作用する際、優れた少数ショット適応能力を示し、セルフプレイのシナリオで優れている。
論文 参考訳(メタデータ) (2024-06-12T08:48:06Z) - AntEval: Evaluation of Social Interaction Competencies in LLM-Driven
Agents [65.16893197330589]
大規模言語モデル(LLM)は、幅広いシナリオで人間の振る舞いを再現する能力を示した。
しかし、複雑なマルチ文字のソーシャルインタラクションを扱う能力については、まだ完全には研究されていない。
本稿では,新しいインタラクションフレームワークと評価手法を含むマルチエージェントインタラクション評価フレームワーク(AntEval)を紹介する。
論文 参考訳(メタデータ) (2024-01-12T11:18:00Z) - Cooperation, Competition, and Maliciousness: LLM-Stakeholders Interactive Negotiation [52.930183136111864]
我々は,大言語モデル(LLM)を評価するためにスコーラブルネゴシエーション(scorable negotiations)を提案する。
合意に達するには、エージェントは強力な算術、推論、探索、計画能力を持つ必要がある。
我々は、新しいゲームを作成し、進化するベンチマークを持つことの難しさを増大させる手順を提供する。
論文 参考訳(メタデータ) (2023-09-29T13:33:06Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgentは、大規模な言語モデルを利用してプロアクティブエージェントを生成する新しいフレームワークである。
ProAgentは現状を分析し、チームメイトの意図を観察から推測することができる。
ProAgentは高度なモジュール化と解釈可能性を示し、様々な調整シナリオに容易に統合できる。
論文 参考訳(メタデータ) (2023-08-22T10:36:56Z) - On the Complexity of Multi-Agent Decision Making: From Learning in Games
to Partial Monitoring [105.13668993076801]
マルチエージェント強化学習(MARL)理論における中心的な問題は、構造条件やアルゴリズムの原理がサンプル効率の学習保証につながるかを理解することである。
本稿では,複数のエージェントを用いた対話型意思決定のための一般的な枠組みとして,この問題について考察する。
マルチエージェント意思決定における統計的複雑性を特徴付けることは、単一エージェント決定の統計的複雑性を特徴付けることと等価であることを示す。
論文 参考訳(メタデータ) (2023-05-01T06:46:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。