論文の概要: Questioning the Unknown: Optimising Multi-Agent Collaboration in Narrative-Driven Games
- arxiv url: http://arxiv.org/abs/2404.17662v3
- Date: Fri, 20 Dec 2024 10:35:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:20:51.771073
- Title: Questioning the Unknown: Optimising Multi-Agent Collaboration in Narrative-Driven Games
- Title(参考訳): 未知を問う - ナラティブ駆動ゲームにおけるマルチエージェントコラボレーションの最適化
- Authors: Qinglin Zhu, Runcong Zhao, Jinhua Du, Lin Gui, Yulan He,
- Abstract要約: We present Questum, a novel framework for Large Language Model (LLM) based agent in Murder Mystery Games (MMGs)。
MMGには、未定義の状態空間、中間報酬の欠如、継続的な言語領域における戦略的相互作用の必要性など、ユニークな課題がある。
Questumは、エージェント状態のセンサベース表現、情報ゲインによってガイドされる質問ターゲティングメカニズム、そして容疑者リストを洗練し、意思決定効率を高めるためのプルーニング戦略を通じて、これらの複雑さに対処する。
- 参考スコア(独自算出の注目度): 18.383262467079078
- License:
- Abstract: We present Questum, a novel framework for Large Language Model (LLM)-based agents in Murder Mystery Games (MMGs). MMGs pose unique challenges, including undefined state spaces, absent intermediate rewards, and the need for strategic interaction in a continuous language domain. Questum addresses these complexities through a sensor-based representation of agent states, a question-targeting mechanism guided by information gain, and a pruning strategy to refine suspect lists and enhance decision-making efficiency. To enable systematic evaluation, we propose WellPlay, a dataset comprising 1,482 inferential questions across 12 games, categorised into objectives, reasoning, and relationships. Experiments demonstrate Questum's capacity to achieve superior performance in reasoning accuracy and efficiency compared to existing approaches, while also significantly improving the quality of agent-human interactions in MMGs. This study advances the development of reasoning agents for complex social and interactive scenarios.
- Abstract(参考訳): 本稿では,Murder Mystery Games(MMG)における大規模言語モデル(LLM)に基づくエージェントのための新しいフレームワークであるQuestumを紹介する。
MMGには、未定義の状態空間、中間報酬の欠如、継続的な言語領域における戦略的相互作用の必要性など、ユニークな課題がある。
Questumは、エージェント状態のセンサベース表現、情報ゲインによってガイドされる質問ターゲティングメカニズム、そして容疑者リストを洗練し、意思決定効率を高めるためのプルーニング戦略を通じて、これらの複雑さに対処する。
システム評価を実現するために,12ゲームにまたがる1,482の推論質問からなるデータセットWellPlayを提案し,目的,推論,関係性に分類した。
実験は、既存のアプローチと比較して精度と効率を推算する上で、クエストムの優れた性能を達成する能力を示すとともに、MMGにおけるエージェントとヒューマンの相互作用の質を著しく改善することを示した。
本研究では,複雑な社会的・インタラクティブなシナリオのための推論エージェントの開発を進める。
関連論文リスト
- Multi-Agent Large Language Models for Conversational Task-Solving [0.0]
対話型タスク解決における新たな主人公として,マルチエージェントシステムが誕生する。
複雑さの異なるタスク間で、マルチエージェントの議論がどのように機能するかは、いまだ不明である。
2022年から2024年までの20のマルチエージェント研究の分類について提案する。
論文 参考訳(メタデータ) (2024-10-30T11:38:13Z) - SWE-Search: Enhancing Software Agents with Monte Carlo Tree Search and Iterative Refinement [18.84439000902905]
SWE-Searchは、MCTS(Monte Carlo Tree Search)と自己改善機構を統合し、ソフトウェアエージェントのパフォーマンスを向上させるマルチエージェントフレームワークである。
本研究は,複雑でダイナミックなソフトウェア工学環境において,エージェント推論と計画を強化する自己評価型検索技術の可能性を強調した。
論文 参考訳(メタデータ) (2024-10-26T22:45:56Z) - AgentSense: Benchmarking Social Intelligence of Language Agents through Interactive Scenarios [38.878966229688054]
本稿では,対話型シナリオを通して言語エージェントのソーシャルインテリジェンスをベンチマークするAgensSenseを紹介する。
ドラマティック理論に基づいて、エージェントセンスは、広範なスクリプトから構築された1,225の多様な社会的シナリオを作成するためにボトムアップアプローチを採用している。
我々はERG理論を用いて目標を分析し、包括的な実験を行う。
以上の結果から,LPMは複雑な社会シナリオ,特に高レベルの成長ニーズにおいて,目標達成に苦慮していることが明らかとなった。
論文 参考訳(メタデータ) (2024-10-25T07:04:16Z) - A Survey on Complex Tasks for Goal-Directed Interactive Agents [60.53915548970061]
この調査は、目標指向の対話エージェントを評価するための、関連するタスクと環境をコンパイルする。
関連リソースの最新のコンパイルは、プロジェクトのWebサイトにある。
論文 参考訳(メタデータ) (2024-09-27T08:17:53Z) - Enhancing Heterogeneous Multi-Agent Cooperation in Decentralized MARL via GNN-driven Intrinsic Rewards [1.179778723980276]
MARL(Multi-agent Reinforcement Learning)は、シーケンシャルな意思決定と制御タスクの鍵となるフレームワークである。
これらのシステムを現実のシナリオに展開するには、分散トレーニング、多様なエージェントセット、そして頻繁な環境報酬信号から学ぶ必要がある。
我々は,新しいグラフニューラルネットワーク(GNN)に基づく本質的なモチベーションを利用して,異種エージェントポリシーの学習を容易にするCoHetアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-12T21:38:40Z) - Efficient Adaptation in Mixed-Motive Environments via Hierarchical Opponent Modeling and Planning [51.52387511006586]
本稿では,HOP(Hierarchical Opponent Modeling and Planning)を提案する。
HOPは階層的に2つのモジュールから構成される: 相手の目標を推論し、対応する目標条件のポリシーを学ぶ、反対モデリングモジュール。
HOPは、さまざまな未確認エージェントと相互作用する際、優れた少数ショット適応能力を示し、セルフプレイのシナリオで優れている。
論文 参考訳(メタデータ) (2024-06-12T08:48:06Z) - AntEval: Evaluation of Social Interaction Competencies in LLM-Driven
Agents [65.16893197330589]
大規模言語モデル(LLM)は、幅広いシナリオで人間の振る舞いを再現する能力を示した。
しかし、複雑なマルチ文字のソーシャルインタラクションを扱う能力については、まだ完全には研究されていない。
本稿では,新しいインタラクションフレームワークと評価手法を含むマルチエージェントインタラクション評価フレームワーク(AntEval)を紹介する。
論文 参考訳(メタデータ) (2024-01-12T11:18:00Z) - Cooperation, Competition, and Maliciousness: LLM-Stakeholders Interactive Negotiation [52.930183136111864]
我々は,大言語モデル(LLM)を評価するためにスコーラブルネゴシエーション(scorable negotiations)を提案する。
合意に達するには、エージェントは強力な算術、推論、探索、計画能力を持つ必要がある。
我々は、新しいゲームを作成し、進化するベンチマークを持つことの難しさを増大させる手順を提供する。
論文 参考訳(メタデータ) (2023-09-29T13:33:06Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgentは、大規模な言語モデルを利用してプロアクティブエージェントを生成する新しいフレームワークである。
ProAgentは現状を分析し、チームメイトの意図を観察から推測することができる。
ProAgentは高度なモジュール化と解釈可能性を示し、様々な調整シナリオに容易に統合できる。
論文 参考訳(メタデータ) (2023-08-22T10:36:56Z) - On the Complexity of Multi-Agent Decision Making: From Learning in Games
to Partial Monitoring [105.13668993076801]
マルチエージェント強化学習(MARL)理論における中心的な問題は、構造条件やアルゴリズムの原理がサンプル効率の学習保証につながるかを理解することである。
本稿では,複数のエージェントを用いた対話型意思決定のための一般的な枠組みとして,この問題について考察する。
マルチエージェント意思決定における統計的複雑性を特徴付けることは、単一エージェント決定の統計的複雑性を特徴付けることと等価であることを示す。
論文 参考訳(メタデータ) (2023-05-01T06:46:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。