Exploring the efficacy of a hybrid approach with modal decomposition over fully deep learning models for flow dynamics forecasting
- URL: http://arxiv.org/abs/2404.17884v1
- Date: Sat, 27 Apr 2024 12:43:02 GMT
- Title: Exploring the efficacy of a hybrid approach with modal decomposition over fully deep learning models for flow dynamics forecasting
- Authors: Rodrigo Abadía-Heredia, Adrián Corrochano, Manuel Lopez-Martin, Soledad Le Clainche,
- Abstract summary: We study the application of time series forecasting to fluid dynamics problems.
The aim is to predict the flow dynamics using only past information.
We focus our study on models based on deep learning that do not require a high amount of data for training.
- Score: 2.8686437689115363
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Fluid dynamics problems are characterized by being multidimensional and nonlinear, causing the experiments and numerical simulations being complex, time-consuming and monetarily expensive. In this sense, there is a need to find new ways to obtain data in a more economical manner. Thus, in this work we study the application of time series forecasting to fluid dynamics problems, where the aim is to predict the flow dynamics using only past information. We focus our study on models based on deep learning that do not require a high amount of data for training, as this is the problem we are trying to address. Specifically in this work we have tested three autoregressive models where two of them are fully based on deep learning and the other one is a hybrid model that combines modal decomposition with deep learning. We ask these models to generate $200$ time-ahead predictions of two datasets coming from a numerical simulation and experimental measurements, where the latter is characterized by being turbulent. We show how the hybrid model generates more reliable predictions in the experimental case, as it is physics-informed in the sense that the modal decomposition extracts the physics in a way that allows us to predict it.
Related papers
- Nonlinear Model Order Reduction of Dynamical Systems in Process Engineering: Review and Comparison [50.0791489606211]
We review state-of-the-art nonlinear model order reduction methods.<n>We discuss both general-purpose methods and tailored approaches for (chemical) process systems.
arXiv Detail & Related papers (2025-06-15T11:39:12Z) - Hybrid machine learning models based on physical patterns to accelerate CFD simulations: a short guide on autoregressive models [3.780691701083858]
This study presents an innovative integration of High-Order Singular Value Decomposition with Long Short-Term Memory (LSTM) architectures to address the complexities of reduced-order modeling (ROM) in fluid dynamics.
The methodology is tested across numerical and experimental data sets, including two- and three-dimensional (2D and 3D) cylinder wake flows, spanning both laminar and turbulent regimes.
The results demonstrate that HOSVD outperforms SVD in all tested scenarios, as evidenced by using different error metrics.
arXiv Detail & Related papers (2025-04-09T10:56:03Z) - Koopman-Based Surrogate Modelling of Turbulent Rayleigh-Bénard Convection [4.248022697109535]
We use a Koopman-inspired architecture called the Linear Recurrent Autoencoder Network (LRAN) for learning reduced-order dynamics in convection flows.
A traditional fluid dynamics method, the Kernel Dynamic Mode Decomposition (KDMD) is used to compare the LRAN.
We obtained more accurate predictions with the LRAN than with KDMD in the most turbulent setting.
arXiv Detail & Related papers (2024-05-10T12:15:02Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Data-driven Nonlinear Model Reduction using Koopman Theory: Integrated
Control Form and NMPC Case Study [56.283944756315066]
We propose generic model structures combining delay-coordinate encoding of measurements and full-state decoding to integrate reduced Koopman modeling and state estimation.
A case study demonstrates that our approach provides accurate control models and enables real-time capable nonlinear model predictive control of a high-purity cryogenic distillation column.
arXiv Detail & Related papers (2024-01-09T11:54:54Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs.
We introduce a novel generative modeling framework grounded in textbfphase space dynamics
Our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.
arXiv Detail & Related papers (2023-10-11T18:38:28Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Forecasting through deep learning and modal decomposition in two-phase
concentric jets [2.362412515574206]
This work aims to improve fuel chamber injectors' performance in turbofan engines.
It requires the development of models that allow real-time prediction and improvement of the fuel/air mixture.
arXiv Detail & Related papers (2022-12-24T12:59:41Z) - Data-driven low-dimensional dynamic model of Kolmogorov flow [0.0]
Reduced order models (ROMs) that capture flow dynamics are of interest for decreasing computational costs for simulation.
This work presents a data-driven framework for minimal-dimensional models that effectively capture the dynamics and properties of the flow.
We apply this to Kolmogorov flow in a regime consisting of chaotic and intermittent behavior.
arXiv Detail & Related papers (2022-10-29T23:05:39Z) - Data-driven Control of Agent-based Models: an Equation/Variable-free
Machine Learning Approach [0.0]
We present an Equation/Variable free machine learning (EVFML) framework for the control of the collective dynamics of complex/multiscale systems.
The proposed implementation consists of three steps: (A) from high-dimensional agent-based simulations, machine learning (in particular, non-linear manifold learning (DMs))
We exploit the Equation-free approach to perform numerical bifurcation analysis of the emergent dynamics.
We design data-driven embedded wash-out controllers that drive the agent-based simulators to their intrinsic, imprecisely known, emergent open-loop unstable steady-states.
arXiv Detail & Related papers (2022-07-12T18:16:22Z) - Realization of the Trajectory Propagation in the MM-SQC Dynamics by
Using Machine Learning [4.629634111796585]
We apply the supervised machine learning (ML) approach to realize the trajectory-based nonadiabatic dynamics.
The proposed idea is proven to be reliable and accurate in the simulations of the dynamics of several site-exciton electron-phonon coupling models.
arXiv Detail & Related papers (2022-07-11T01:23:36Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
We propose a hybrid approach combining deep learning and physical motion models.
We achieve interpretability by restricting the output range of the deep neural network as part of the hybrid model.
The results show that our hybrid model can improve model interpretability with no decrease in accuracy compared to existing deep learning approaches.
arXiv Detail & Related papers (2021-03-11T15:21:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.