論文の概要: CBMAP: Clustering-based manifold approximation and projection for dimensionality reduction
- arxiv url: http://arxiv.org/abs/2404.17940v1
- Date: Sat, 27 Apr 2024 15:44:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 12:29:16.730113
- Title: CBMAP: Clustering-based manifold approximation and projection for dimensionality reduction
- Title(参考訳): CBMAP:次元減少のためのクラスタリングに基づく多様体近似と射影
- Authors: Berat Dogan,
- Abstract要約: データ次元を減少させるために次元性低減法が用いられる。
本研究は,次元削減のためのクラスタリングに基づくアプローチであるCBMAPを紹介する。
CBMAPは、大域的構造と局所的構造の両方を保存することを目的としており、低次元空間のクラスターが高次元空間のクラスタと密接に類似していることを保証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dimensionality reduction methods are employed to decrease data dimensionality, either to enhance machine learning performance or to facilitate data visualization in two or three-dimensional spaces. These methods typically fall into two categories: feature selection and feature transformation. Feature selection retains significant features, while feature transformation projects data into a lower-dimensional space, with linear and nonlinear methods. While nonlinear methods excel in preserving local structures and capturing nonlinear relationships, they may struggle with interpreting global structures and can be computationally intensive. Recent algorithms, such as the t-SNE, UMAP, TriMap, and PaCMAP prioritize preserving local structures, often at the expense of accurately representing global structures, leading to clusters being spread out more in lower-dimensional spaces. Moreover, these methods heavily rely on hyperparameters, making their results sensitive to parameter settings. To address these limitations, this study introduces a clustering-based approach, namely CBMAP (Clustering-Based Manifold Approximation and Projection), for dimensionality reduction. CBMAP aims to preserve both global and local structures, ensuring that clusters in lower-dimensional spaces closely resemble those in high-dimensional spaces. Experimental evaluations on benchmark datasets demonstrate CBMAP's efficacy, offering speed, scalability, and minimal reliance on hyperparameters. Importantly, CBMAP enables low-dimensional projection of test data, addressing a critical need in machine learning applications. CBMAP is made freely available at https://github.com/doganlab/cbmap and can be installed from the Python Package Directory (PyPI) software repository with the command pip install cbmap.
- Abstract(参考訳): 次元性低減法は、機械学習の性能向上や、2次元または3次元空間におけるデータの可視化を容易にするために用いられる。
これらの手法は通常、特徴選択と特徴変換の2つのカテゴリに分類される。
特徴選択は重要な特徴を保ち、特徴変換はデータを線形および非線形な方法で低次元空間に投影する。
非線形手法は局所構造を保存し、非線形関係を捉えるのに優れているが、大域構造を解釈するのに苦労し、計算的に集約することができる。
t-SNE、UMAP、TriMap、PaCMAPといった最近のアルゴリズムは、しばしばグローバルな構造を正確に表現するために、局所的な構造を保存することを優先している。
さらに、これらの手法はハイパーパラメータに大きく依存しており、パラメータ設定に敏感である。
これらの制約に対処するために, CBMAP (Clustering-based Manifold Approximation and Projection) というクラスタリングに基づく手法を導入する。
CBMAPは、大域的構造と局所的構造の両方を保存することを目的としており、低次元空間のクラスターが高次元空間のクラスタと密接に類似していることを保証する。
ベンチマークデータセットの実験的評価はCBMAPの有効性を示し、スピード、スケーラビリティ、ハイパーパラメータへの最小依存を提供する。
重要なことは、CBMAPはテストデータの低次元投影を可能にし、機械学習アプリケーションにおける重要なニーズに対処する。
CBMAPはhttps://github.com/doganlab/cbmapで無料で利用可能であり、Python Package Directory (PyPI)ソフトウェアリポジトリからインストールすることができる。
関連論文リスト
- Inductive Global and Local Manifold Approximation and Projection [5.629705943815797]
まず,次元縮小と高次元データ可視化のための新しい多様体学習法であるGLoMAPを提案する。
我々はGLoMAPをインダクティブ版iGLoMAPに拡張し、ディープニューラルネットワークを用いてデータを低次元表現にマッピングする。
我々は,GLoMAPとiGLoMAPの両方をシミュレーションおよび実データ設定に適用し,最先端手法に対する競合実験を行った。
論文 参考訳(メタデータ) (2024-06-12T11:22:27Z) - Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
自己組織化マップ(SOM)におけるトポロジカルプロジェクションに基づく半教師付き学習手法を提案する。
提案手法は,まずラベル付きデータ上でSOMを訓練し,最小限のラベル付きデータポイントをキーベストマッチングユニット(BMU)に割り当てる。
提案した最小教師付きモデルが従来の回帰手法を大幅に上回ることを示す。
論文 参考訳(メタデータ) (2024-01-12T22:51:48Z) - Scalable manifold learning by uniform landmark sampling and constrained
locally linear embedding [0.6144680854063939]
本研究では,大規模・高次元データを効率的に操作できるスケーラブルな多様体学習法を提案する。
異なるタイプの合成データセットと実世界のベンチマークにおけるSCMLの有効性を実証的に検証した。
scMLはデータサイズや埋め込み次元の増大とともにスケールし、グローバル構造を保存する上で有望なパフォーマンスを示す。
論文 参考訳(メタデータ) (2024-01-02T08:43:06Z) - Supervised Manifold Learning via Random Forest Geometry-Preserving
Proximities [0.0]
クラス条件付き多様体学習手法の弱点を定量的かつ視覚的に示す。
本稿では,ランダムな森の近さをデータジオメトリ保存した変種を用いて,教師付き次元減少のためのカーネルの代替選択を提案する。
論文 参考訳(メタデータ) (2023-07-03T14:55:11Z) - Learning Implicit Feature Alignment Function for Semantic Segmentation [51.36809814890326]
Implicit Feature Alignment Function (IFA)は、暗黙の神経表現の急速に拡大するトピックにインスパイアされている。
IFAは機能マップを異なるレベルで暗黙的に整列し、任意の解像度でセグメンテーションマップを生成することができることを示す。
提案手法は,様々なアーキテクチャの改善と組み合わせて,一般的なベンチマークにおける最先端の精度のトレードオフを実現する。
論文 参考訳(メタデータ) (2022-06-17T09:40:14Z) - Index $t$-SNE: Tracking Dynamics of High-Dimensional Datasets with
Coherent Embeddings [1.7188280334580195]
本稿では,クラスタの位置を保存した新しいものを作成するために,埋め込みを再利用する手法を提案する。
提案アルゴリズムは,新しい項目を埋め込むために$t$-SNEと同じ複雑さを持つ。
論文 参考訳(メタデータ) (2021-09-22T06:45:37Z) - A Local Similarity-Preserving Framework for Nonlinear Dimensionality
Reduction with Neural Networks [56.068488417457935]
本稿では,Vec2vecという新しい局所非線形手法を提案する。
ニューラルネットワークを訓練するために、マトリックスの近傍類似度グラフを構築し、データポイントのコンテキストを定義します。
8つの実データセットにおけるデータ分類とクラスタリングの実験により、Vec2vecは統計仮説テストにおける古典的な次元削減法よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-03-10T23:10:47Z) - Two-Dimensional Semi-Nonnegative Matrix Factorization for Clustering [50.43424130281065]
TS-NMFと呼ばれる2次元(2次元)データに対する新しい半負行列分解法を提案する。
前処理ステップで2次元データをベクトルに変換することで、データの空間情報に深刻なダメージを与える既存の手法の欠点を克服する。
論文 参考訳(メタデータ) (2020-05-19T05:54:14Z) - Learnable Subspace Clustering [76.2352740039615]
本研究では,大規模サブスペースクラスタリング問題を効率的に解くために,学習可能なサブスペースクラスタリングパラダイムを開発する。
鍵となる考え方は、高次元部分空間を下層の低次元部分空間に分割するパラメトリック関数を学ぶことである。
我々の知る限り、本論文は、サブスペースクラスタリング手法の中で、数百万のデータポイントを効率的にクラスタ化する最初の試みである。
論文 参考訳(メタデータ) (2020-04-09T12:53:28Z) - Supervised Discriminative Sparse PCA with Adaptive Neighbors for
Dimensionality Reduction [47.1456603605763]
そこで本研究では, 適応隣り合わせの線形次元削減手法(SDSPCAAN)を提案する。
その結果、グローバルデータ構造とローカルデータ構造、およびラベル情報の両方が、より次元性の低減に使用される。
論文 参考訳(メタデータ) (2020-01-09T17:02:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。