Neural Temporal Point Process for Forecasting Higher Order and Directional Interactions
- URL: http://arxiv.org/abs/2301.12210v2
- Date: Sat, 27 Apr 2024 15:12:34 GMT
- Title: Neural Temporal Point Process for Forecasting Higher Order and Directional Interactions
- Authors: Tony Gracious, Arman Gupta, Ambedkar Dukkipati,
- Abstract summary: We propose a deep neural network-based model textitDirected HyperNode Temporal Point Process for directed hyperedge event forecasting.
Our proposed technique reduces the search space by initially forecasting the nodes at which events will be observed.
Based on these, it generates candidate hyperedges, which are then used by a hyperedge predictor to identify the ground truth.
- Score: 10.803714426078642
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-world systems are made of interacting entities that evolve with time. Creating models that can forecast interactions by learning the dynamics of entities is an important problem in numerous fields. Earlier works used dynamic graph models to achieve this. However, real-world interactions are more complex than pairwise, as they involve more than two entities, and many of these higher-order interactions have directional components. Examples of these can be seen in communication networks such as email exchanges that involve a sender, and multiple recipients, citation networks, where authors draw upon the work of others, and so on. In this paper, we solve the problem of higher-order directed interaction forecasting by proposing a deep neural network-based model \textit{Directed HyperNode Temporal Point Process} for directed hyperedge event forecasting, as hyperedge provides a native framework for modeling relationships among the variable number of nodes. Our proposed technique reduces the search space by initially forecasting the nodes at which events will be observed and then forecasting hyperedge sizes and adjacency vectors for the nodes observing events. Based on these, it generates candidate hyperedges, which are then used by a hyperedge predictor to identify the ground truth. To demonstrate the efficiency of our model, we curated five datasets and conducted an extensive empirical study. We believe that this is the first work that solves the problem of forecasting higher-order directional interactions.
Related papers
- SPHINX: Structural Prediction using Hypergraph Inference Network [19.853413818941608]
We introduce Structural Prediction using Hypergraph Inference Network (SPHINX), a model that learns to infer a latent hypergraph structure in an unsupervised way.
We show that the recent advancement in k-subset sampling represents a suitable tool for producing discrete hypergraph structures.
The resulting model can generate the higher-order structure necessary for any modern hypergraph neural network.
arXiv Detail & Related papers (2024-10-04T07:49:57Z) - Deep Representation Learning for Forecasting Recursive and Multi-Relational Events in Temporal Networks [12.142292322071299]
This work addresses the problem of forecasting higher-order interaction events that can be multi-relational and recursive.
The proposed model, textitRelational Recursive Hyperedge Temporal Point Process (RRHyperTPP), uses an encoder that learns a dynamic node representation based on the historical interaction patterns.
We develop a noise contrastive estimation method to learn the parameters of our model, and we have experimentally shown that our models perform better than previous state-of-the-art methods for interaction forecasting.
arXiv Detail & Related papers (2024-04-27T15:46:54Z) - Enhancing Hyperedge Prediction with Context-Aware Self-Supervised Learning [57.35554450622037]
We propose a novel hyperedge prediction framework (CASH)
CASH employs context-aware node aggregation to capture complex relations among nodes in each hyperedge for (C1) and (2) self-supervised contrastive learning in the context of hyperedge prediction to enhance hypergraph representations for (C2)
Experiments on six real-world hypergraphs reveal that CASH consistently outperforms all competing methods in terms of the accuracy in hyperedge prediction.
arXiv Detail & Related papers (2023-09-11T20:06:00Z) - DisenHCN: Disentangled Hypergraph Convolutional Networks for
Spatiotemporal Activity Prediction [53.76601630407521]
We propose a hypergraph network model called DisenHCN to bridge the gaps in existing solutions.
In particular, we first unify fine-grained user similarity and the complex matching between user preferences andtemporal activity into a heterogeneous hypergraph.
We then disentangle the user representations into different aspects (location-aware, time-aware, and activity-aware) and aggregate corresponding aspect's features on the constructed hypergraph.
arXiv Detail & Related papers (2022-08-14T06:51:54Z) - Continuous-Time and Multi-Level Graph Representation Learning for
Origin-Destination Demand Prediction [52.0977259978343]
This paper proposes a Continuous-time and Multi-level dynamic graph representation learning method for Origin-Destination demand prediction (CMOD)
The state vectors keep historical transaction information and are continuously updated according to the most recently happened transactions.
Experiments are conducted on two real-world datasets from Beijing Subway and New York Taxi, and the results demonstrate the superiority of our model against the state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-30T03:37:50Z) - Dynamic Graph Learning Based on Hierarchical Memory for
Origin-Destination Demand Prediction [12.72319550363076]
This paper provides a dynamic graph representation learning framework for OD demands prediction.
In particular, a hierarchical memory updater is first proposed to maintain a time-aware representation for each node.
Atemporal propagation mechanism is provided to aggregate representations of neighbor nodes along a randomtemporal route.
An objective function is designed to derive the future OD demands according to the most recent node.
arXiv Detail & Related papers (2022-05-29T07:52:35Z) - CEP3: Community Event Prediction with Neural Point Process on Graph [59.434777403325604]
We propose a novel model combining Graph Neural Networks and Marked Temporal Point Process (MTPP)
Our experiments demonstrate the superior performance of our model in terms of both model accuracy and training efficiency.
arXiv Detail & Related papers (2022-05-21T15:30:25Z) - Complex Event Forecasting with Prediction Suffix Trees: Extended
Technical Report [70.7321040534471]
Complex Event Recognition (CER) systems have become popular in the past two decades due to their ability to "instantly" detect patterns on real-time streams of events.
There is a lack of methods for forecasting when a pattern might occur before such an occurrence is actually detected by a CER engine.
We present a formal framework that attempts to address the issue of Complex Event Forecasting.
arXiv Detail & Related papers (2021-09-01T09:52:31Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
We propose an integrated solution based on the deep neural networks for temporal sets prediction.
A unique perspective is to learn element relationship by constructing set-level co-occurrence graph.
We design an attention-based module to adaptively learn the temporal dependency of elements and sets.
arXiv Detail & Related papers (2020-06-20T03:29:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.