論文の概要: Prompt Customization for Continual Learning
- arxiv url: http://arxiv.org/abs/2404.18060v1
- Date: Sun, 28 Apr 2024 03:28:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 18:02:54.158594
- Title: Prompt Customization for Continual Learning
- Title(参考訳): 継続的学習のためのプロンプトカスタマイズ
- Authors: Yong Dai, Xiaopeng Hong, Yabin Wang, Zhiheng Ma, Dongmei Jiang, Yaowei Wang,
- Abstract要約: 本稿では,継続的学習のためのプロンプト的アプローチを再構築し,プロンプト的カスタマイズ(PC)手法を提案する。
PCは主にプロンプト生成モジュール(PGM)とプロンプト変調モジュール(PMM)で構成される。
提案手法は,クラス,ドメイン,タスクに依存しないインクリメンタル学習タスクを含む3つの異なる設定に対して,4つのベンチマークデータセットを用いて評価する。
- 参考スコア(独自算出の注目度): 57.017987355717935
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contemporary continual learning approaches typically select prompts from a pool, which function as supplementary inputs to a pre-trained model. However, this strategy is hindered by the inherent noise of its selection approach when handling increasing tasks. In response to these challenges, we reformulate the prompting approach for continual learning and propose the prompt customization (PC) method. PC mainly comprises a prompt generation module (PGM) and a prompt modulation module (PMM). In contrast to conventional methods that employ hard prompt selection, PGM assigns different coefficients to prompts from a fixed-sized pool of prompts and generates tailored prompts. Moreover, PMM further modulates the prompts by adaptively assigning weights according to the correlations between input data and corresponding prompts. We evaluate our method on four benchmark datasets for three diverse settings, including the class, domain, and task-agnostic incremental learning tasks. Experimental results demonstrate consistent improvement (by up to 16.2\%), yielded by the proposed method, over the state-of-the-art (SOTA) techniques.
- Abstract(参考訳): 現代の連続学習アプローチは、通常、事前訓練されたモデルへの補足的な入力として機能するプールからのプロンプトを選択する。
しかし、この戦略は、タスクの増加に対処する際、選択アプローチの固有のノイズによって妨げられている。
これらの課題に対応して、継続学習のためのプロンプト的アプローチを再構築し、プロンプト的カスタマイズ(PC)手法を提案する。
PCは、主にプロンプト生成モジュール(PGM)とプロンプト変調モジュール(PMM)から構成される。
ハードプロンプト選択を用いる従来の手法とは対照的に、PGMは異なる係数を固定サイズのプロンプトプールからのプロンプトに割り当て、調整されたプロンプトを生成する。
さらに、PMMは、入力データと対応するプロンプトとの相関に応じて重みを適応的に割り当てることで、プロンプトの調整を行う。
提案手法は,クラス,ドメイン,タスクに依存しないインクリメンタル学習タスクを含む3つの異なる設定に対して,4つのベンチマークデータセットを用いて評価する。
実験結果から, 最先端技術 (SOTA) による一貫した改善(最大16.2\%)が得られた。
関連論文リスト
- Mixture of Prompt Learning for Vision Language Models [12.828490399811376]
ルーティングモジュールを組み込んだソフトプロンプト学習手法の混合を提案する。
このモジュールはデータセットのさまざまなスタイルをキャプチャし、インスタンス毎に最も適切なプロンプトを動的に選択することができる。
また、意味的にグループ化されたテキストレベルの監視を実装し、各ソフトプロンプトを、そのグループから手動で設計されたテンプレートのトークン埋め込みで初期化する。
論文 参考訳(メタデータ) (2024-09-18T14:25:02Z) - Efficient Prompting Methods for Large Language Models: A Survey [50.171011917404485]
プロンプティングは、特定の自然言語処理タスクに大規模言語モデル(LLM)を適用するための主流パラダイムとなっている。
このアプローチは、LLMの振る舞いをガイドし、制御するために、モデル推論と人間の努力のさらなる計算負担をもたらす。
本稿では, 今後の研究の方向性を明らかにするため, 促進, 効率的な促進のための進歩を概説する。
論文 参考訳(メタデータ) (2024-04-01T12:19:08Z) - Learning Label Modular Prompts for Text Classification in the Wild [56.66187728534808]
そこで本研究では,非定常学習/テスト段階の異なるテキスト分類手法を提案する。
複雑なタスクをモジュラー成分に分解することで、そのような非定常環境下での堅牢な一般化が可能になる。
テキスト分類タスクのためのラベルモジュール型プロンプトチューニングフレームワークMODcularPROMPTを提案する。
論文 参考訳(メタデータ) (2022-11-30T16:26:38Z) - TEMPERA: Test-Time Prompting via Reinforcement Learning [57.48657629588436]
強化学習(TEMPERA)を用いたテスト時間プロンプト編集を提案する。
従来のプロンプト生成手法とは対照的に、TEMPERAは事前知識を効率的に活用することができる。
本手法は従来の微調整法と比較して試料効率の平均改善率を5.33倍に向上させる。
論文 参考訳(メタデータ) (2022-11-21T22:38:20Z) - Instance-wise Prompt Tuning for Pretrained Language Models [72.74916121511662]
インスタンスワイドのPrompt Tuning(IPT)は、入力データインスタンスからプロンプトに知識を注入する最初のプロンプト学習パラダイムである。
IPTはタスクベースのプロンプト学習法を著しく上回り、調律パラメータのわずか0.5%から1.5%で従来の微調整に匹敵する性能を達成している。
論文 参考訳(メタデータ) (2022-06-04T10:08:50Z) - IDPG: An Instance-Dependent Prompt Generation Method [58.45110542003139]
Prompt tuningは、モデルトレーニング段階で各入力インスタンスにタスク固有のプロンプトを追加する、新しい、効率的なNLP転送学習パラダイムである。
本稿では,各入力インスタンスのプロンプトを生成する条件付きプロンプト生成手法を提案する。
論文 参考訳(メタデータ) (2022-04-09T15:45:27Z) - Making Pre-trained Language Models End-to-end Few-shot Learners with
Contrastive Prompt Tuning [41.15017636192417]
CP-Tuning(CP-Tuning)は、言語モデルのための最初のエンドツーエンドのPrompt Tuningフレームワークである。
完全にトレーニング可能なプロンプトパラメータを持つタスク不変の連続プロンプトエンコーディング技術と統合されている。
IRシステムや異なるPLMで使用される様々な言語理解タスクの実験は、CP-Tuningが最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2022-04-01T02:24:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。