Learning Fairer Representations with FairVIC
- URL: http://arxiv.org/abs/2404.18134v2
- Date: Mon, 03 Feb 2025 12:49:14 GMT
- Title: Learning Fairer Representations with FairVIC
- Authors: Charmaine Barker, Daniel Bethell, Dimitar Kazakov,
- Abstract summary: Mitigating bias in automated decision-making systems is a critical challenge due to nuanced definitions of fairness and dataset-specific biases.
We introduce FairVIC, an innovative approach that enhances fairness in neural networks by integrating variance, invariance, and covariance terms into the loss function during training.
We evaluate FairVIC against comparable bias mitigation techniques on benchmark datasets, considering both group and individual fairness, and conduct an ablation study on the accuracy-fairness trade-off.
- Score: 0.0
- License:
- Abstract: Mitigating bias in automated decision-making systems, particularly in deep learning models, is a critical challenge due to nuanced definitions of fairness, dataset-specific biases, and the inherent trade-off between fairness and accuracy. To address these issues, we introduce FairVIC, an innovative approach that enhances fairness in neural networks by integrating variance, invariance, and covariance terms into the loss function during training. Unlike methods that rely on predefined fairness criteria, FairVIC abstracts fairness concepts to minimise dependency on protected characteristics. We evaluate FairVIC against comparable bias mitigation techniques on benchmark datasets, considering both group and individual fairness, and conduct an ablation study on the accuracy-fairness trade-off. FairVIC demonstrates significant improvements ($\approx70\%$) in fairness across all tested metrics without compromising accuracy, thus offering a robust, generalisable solution for fair deep learning across diverse tasks and datasets.
Related papers
- Achievable Fairness on Your Data With Utility Guarantees [16.78730663293352]
In machine learning fairness, training models that minimize disparity across different sensitive groups often leads to diminished accuracy.
We present a computationally efficient approach to approximate the fairness-accuracy trade-off curve tailored to individual datasets.
We introduce a novel methodology for quantifying uncertainty in our estimates, thereby providing practitioners with a robust framework for auditing model fairness.
arXiv Detail & Related papers (2024-02-27T00:59:32Z) - Multi-dimensional Fair Federated Learning [25.07463977553212]
Federated learning (FL) has emerged as a promising collaborative and secure paradigm for training a model from decentralized data.
Group fairness and client fairness are two dimensions of fairness that are important for FL.
We propose a method, called mFairFL, to achieve group fairness and client fairness simultaneously.
arXiv Detail & Related papers (2023-12-09T11:37:30Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age.
A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data.
In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE.
arXiv Detail & Related papers (2023-07-17T04:08:29Z) - Learning Fair Classifiers via Min-Max F-divergence Regularization [13.81078324883519]
We introduce a novel min-max F-divergence regularization framework for learning fair classification models.
We show that F-divergence measures possess convexity and differentiability properties.
We show that the proposed framework achieves state-of-the-art performance with respect to the trade-off between accuracy and fairness.
arXiv Detail & Related papers (2023-06-28T20:42:04Z) - Fair-CDA: Continuous and Directional Augmentation for Group Fairness [48.84385689186208]
We propose a fine-grained data augmentation strategy for imposing fairness constraints.
We show that group fairness can be achieved by regularizing the models on transition paths of sensitive features between groups.
Our proposed method does not assume any data generative model and ensures good generalization for both accuracy and fairness.
arXiv Detail & Related papers (2023-04-01T11:23:00Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
This work presents a self-supervised model, called DualFair, that can debias sensitive attributes like gender and race from learned representations.
Our model jointly optimize for two fairness criteria - group fairness and counterfactual fairness.
arXiv Detail & Related papers (2023-03-15T07:13:54Z) - FairAdaBN: Mitigating unfairness with adaptive batch normalization and
its application to dermatological disease classification [14.589159162086926]
We propose FairAdaBN, which makes batch normalization adaptive to sensitive attribute.
We propose a new metric, named Fairness-Accuracy Trade-off Efficiency (FATE), to compute normalized fairness improvement over accuracy drop.
Experiments on two dermatological datasets show that our proposed method outperforms other methods on fairness criteria and FATE.
arXiv Detail & Related papers (2023-03-15T02:22:07Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
We first theoretically demonstrate the inherent connection between distribution shift, data perturbation, and model weight perturbation.
We then analyze the sufficient conditions to guarantee fairness for the target dataset.
Motivated by these sufficient conditions, we propose robust fairness regularization (RFR)
arXiv Detail & Related papers (2023-03-06T17:19:23Z) - Learning Informative Representation for Fairness-aware Multivariate
Time-series Forecasting: A Group-based Perspective [50.093280002375984]
Performance unfairness among variables widely exists in multivariate time series (MTS) forecasting models.
We propose a novel framework, named FairFor, for fairness-aware MTS forecasting.
arXiv Detail & Related papers (2023-01-27T04:54:12Z) - How Robust is Your Fairness? Evaluating and Sustaining Fairness under
Unseen Distribution Shifts [107.72786199113183]
We propose a novel fairness learning method termed CUrvature MAtching (CUMA)
CUMA achieves robust fairness generalizable to unseen domains with unknown distributional shifts.
We evaluate our method on three popular fairness datasets.
arXiv Detail & Related papers (2022-07-04T02:37:50Z) - FACT: A Diagnostic for Group Fairness Trade-offs [23.358566041117083]
Group fairness is a class of fairness notions that measure how different groups of individuals are treated differently according to their protected attributes.
We propose a general diagnostic that enables systematic characterization of these trade-offs in group fairness.
arXiv Detail & Related papers (2020-04-07T14:15:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.