論文の概要: Bayesian optimization for state engineering of quantum gases
- arxiv url: http://arxiv.org/abs/2404.18234v1
- Date: Sun, 28 Apr 2024 16:24:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 15:35:41.177083
- Title: Bayesian optimization for state engineering of quantum gases
- Title(参考訳): 量子気体の状態工学のためのベイズ最適化
- Authors: Gabriel Müller, V. J. Martínez-Lahuerta, Ivan Sekulic, Sven Burger, Philipp-Immanuel Schneider, Naceur Gaaloul,
- Abstract要約: 量子オブジェクトの状態工学は、ほとんどの実装において中心的な要件である。
本稿では,多出力ガウス過程に基づくベイズ最適化を提案する。
これは複雑な量子系の効率的な状態工学への道を開く。
- 参考スコア(独自算出の注目度): 1.6144007597015433
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: State engineering of quantum objects is a central requirement in most implementations. In the cases where the quantum dynamics can be described by analytical solutions or simple approximation models, optimal state preparation protocols have been theoretically proposed and experimentally realized. For more complex systems, however, such as multi-component quantum gases, simplifying assumptions do not apply anymore and the optimization techniques become computationally impractical. Here, we propose Bayesian optimization based on multi-output Gaussian processes to learn the quantum state's physical properties from few simulations only. We evaluate its performance on an optimization study case of diabatically transporting a Bose-Einstein condensate while keeping it in its ground state, and show that within only few hundreds of executions of the underlying physics simulation, we reach a competitive performance with other protocols. While restricting this benchmarking to well known approximations for straightforward comparisons, we expect a similar performance when employing more involving models, which are computationally more challenging. This paves the way to efficient state engineering of complex quantum systems.
- Abstract(参考訳): 量子オブジェクトの状態工学は、ほとんどの実装において中心的な要件である。
解析解や単純な近似モデルによって量子力学を記述できる場合、最適状態準備プロトコルが理論的に提案され、実験的に実現されている。
しかし、多成分量子ガスのようなより複雑なシステムでは、仮定を単純化することはもはや適用されず、最適化技術は計算的に実用的ではない。
本稿では,数個のシミュレーションのみから量子状態の物理特性を学習するために,多出力ガウス過程に基づくベイズ最適化を提案する。
ボース・アインシュタイン凝縮体を基底状態に保ちながらダイアバティカルに輸送する最適化研究事例において,その性能を評価し,基礎となる物理シミュレーションの数百行以内で,他のプロトコルと競合する性能に達することを示す。
このベンチマークは、単純な比較のためによく知られた近似に制限されるが、より複雑なモデルを採用する際にも同様のパフォーマンスが期待できる。
これは複雑な量子系の効率的な状態工学への道を開く。
関連論文リスト
- Benchmarking Optimizers for Qumode State Preparation with Variational Quantum Algorithms [10.941053143198092]
この分野の進歩と潜在的な応用により、クォーモックへの関心が高まっている。
本稿では,変分量子アルゴリズムを用いて状態準備に使用する各種パラメータのパフォーマンスベンチマークを提供することにより,このギャップを埋めることを目的とする。
論文 参考訳(メタデータ) (2024-05-07T17:15:58Z) - Surrogate optimization of variational quantum circuits [1.0546736060336612]
変分量子固有解法は、多くの応用に影響を及ぼすことのできる短期的アルゴリズムとして評価される。
収束性を改善するアルゴリズムや手法を見つけることは、VQEの短期ハードウェアの能力を加速するために重要である。
論文 参考訳(メタデータ) (2024-04-03T18:00:00Z) - Bayesian Optimization for Robust State Preparation in Quantum Many-Body Systems [0.0]
我々は最近,超低温原子系で実装された状態準備プロトコルにベイズ最適化を適用した。
手動ランプ設計と比較して,最適化手法の優れた性能を数値シミュレーションで示す。
提案されたプロトコルとワークフローは、実験においてより複雑な多体量子状態の実現に向けた道を開く。
論文 参考訳(メタデータ) (2023-12-14T18:59:55Z) - Sparse Quantum State Preparation for Strongly Correlated Systems [0.0]
原理として、指数関数的にスケールする多電子波関数を線形にスケールする量子ビットレジスタに符号化することは、従来の量子化学法の限界を克服するための有望な解決策を提供する。
基底状態量子アルゴリズムが実用的であるためには、量子ビットの初期化が要求される基底状態の高品質な近似に必須である。
量子状態準備(QSP)は、古典的な計算から得られる近似固有状態の生成を可能にするが、量子情報のオラクルとして頻繁に扱われる。
論文 参考訳(メタデータ) (2023-11-06T18:53:50Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
我々は、係数に応じてハミルトン式からサンプリングしてランダムな積公式を構築するqDriftプロトコルを導入する。
サンプリング段階における個別のシミュレーションコストを考慮し、同じ精度でシミュレーションコストを削減可能であることを示す。
格子核効果場理論を用いて数値シミュレーションを行った結果, 実験結果が得られた。
論文 参考訳(メタデータ) (2022-12-12T15:06:32Z) - Evaluating the Convergence of Tabu Enhanced Hybrid Quantum Optimization [58.720142291102135]
本稿では,量子ハードウェア上での最適化問題解決に有用な Tabu Enhanced Hybrid Quantum Optimization メタヒューリスティック手法を提案する。
提案手法の理論的収束を,イジングモデルに基づくタブ状態を保存する対象の衝突の観点から考察する。
論文 参考訳(メタデータ) (2022-09-05T07:23:03Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
生成モデリングは量子コンピュータにとって広く受け入れられている自然のユースケースである。
我々は,アルゴリズムの一般化性能を計測して,生成モデリングのための実用的な量子優位性を探索する,単純で曖昧な手法を構築した。
シミュレーションの結果、我々の量子にインスパイアされたモデルは、目に見えない、有効なサンプルを生成するのに、最大で68倍の費用がかかります。
論文 参考訳(メタデータ) (2022-01-21T16:35:35Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
VQEとADAPT-VQEの精度をベンチマークし、電子基底状態とポテンシャルエネルギー曲線を計算する。
どちらの手法もエネルギーと基底状態の優れた推定値を提供する。
勾配に基づく最適化はより経済的であり、勾配のない類似シミュレーションよりも優れた性能を提供する。
論文 参考訳(メタデータ) (2020-11-02T19:52:04Z) - Efficient State Preparation for Quantum Amplitude Estimation [0.951828574518325]
量子振幅推定はモンテカルロシミュレーションによって古典的に解決されたアプリケーションに対して二次的なスピードアップを達成することができる。
現在知られている効率的な手法は、対数凹面確率分布に基づく問題、経験的データから未知の分布を学ぶこと、あるいは量子算術に完全に依存することを必要とする。
本稿では,QAE状態作成における回路の複雑さを著しく低減する回路最適化手法とともに,状態準備を簡略化する手法を提案する。
論文 参考訳(メタデータ) (2020-05-15T18:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。