論文の概要: Quantum-enhanced learning with a controllable bosonic variational sensor network
- arxiv url: http://arxiv.org/abs/2404.18293v1
- Date: Sun, 28 Apr 2024 19:41:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 15:16:10.549401
- Title: Quantum-enhanced learning with a controllable bosonic variational sensor network
- Title(参考訳): 制御可能なボソニック変動センサネットワークによる量子強化学習
- Authors: Pengcheng Liao, Bingzhi Zhang, Quntao Zhuang,
- Abstract要約: 絡み合ったセンサネットワーク(SLAEN)による教師付き学習
本稿では非線形データ分類タスクを処理できるSLAENを提案する。
分類誤差のしきい値現象は、プローブのエネルギーが一定のしきい値を超えると、誤差は劇的にゼロになる。
- 参考スコア(独自算出の注目度): 0.40964539027092906
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of quantum sensor networks has presented opportunities for enhancing complex sensing tasks, while simultaneously introducing significant challenges in designing and analyzing quantum sensing protocols due to the intricate nature of entanglement and physical processes. Supervised learning assisted by an entangled sensor network (SLAEN) [Phys. Rev. X 9, 041023 (2019)] represents a promising paradigm for automating sensor-network design through variational quantum machine learning. However, the original SLAEN, constrained by the Gaussian nature of quantum circuits, is limited to learning linearly separable data. Leveraging the universal quantum control available in cavity-QED experiments, we propose a generalized SLAEN capable of handling nonlinear data classification tasks. We establish a theoretical framework for physical-layer data classification to underpin our approach. Through training quantum probes and measurements, we uncover a threshold phenomenon in classification error across various tasks -- when the energy of probes exceeds a certain threshold, the error drastically diminishes to zero, providing a significant improvement over the Gaussian SLAEN. Despite the non-Gaussian nature of the problem, we offer analytical insights into determining the threshold and residual error in the presence of noise. Our findings carry implications for radio-frequency photonic sensors and microwave dark matter haloscopes.
- Abstract(参考訳): 量子センサーネットワークの出現は、複雑なセンシングタスクの強化と、絡み合いや物理的プロセスの複雑な性質による量子センサープロトコルの設計と解析において重要な課題を同時に提起する機会をもたらした。
絡み合ったセンサーネットワーク(SLAEN)による監視学習(Phys. X 9, 041023 (2019))は、変動量子機械学習によるセンサネットワーク設計を自動化するための有望なパラダイムである。
しかし、量子回路のガウスの性質に制約されたオリジナルのSLAENは、線形分離可能なデータを学ぶことに限定されている。
空洞QED実験で利用可能な普遍量子制御を活用し,非線形データ分類タスクを扱える一般化SLAENを提案する。
我々は,物理層データ分類の理論的枠組みを確立し,アプローチの基盤となる。
量子プローブのトレーニングと測定により、様々なタスクにわたる分類誤差のしきい値現象が発見される。プローブのエネルギーが一定のしきい値を超えると、エラーはゼロに劇的に減少し、ガウスSLAENよりも大幅に改善される。
この問題の非ガウス的性質にもかかわらず、ノイズの存在下でのしきい値と残留誤差を決定するための分析的な洞察を提供する。
本研究は,マイクロ波暗黒物質ハロスコープと高周波フォトニックセンサの関係について検討した。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Qsco: A Quantum Scoring Module for Open-set Supervised Anomaly Detection [5.931953711154524]
複雑なデータ構造を扱う量子コンピューティングの最近の進歩と機械学習モデルの改善は、異常検出手法におけるパラダイムシフトを先導している。
本研究では、量子変動回路をニューラルネットワークに埋め込み、不確実性やラベルなしデータを扱う際のモデルの処理能力を向上する量子スコーリングモジュール(Qsco)を提案する。
論文 参考訳(メタデータ) (2024-05-25T22:37:43Z) - Optical Quantum Sensing for Agnostic Environments via Deep Learning [59.088205627308]
本稿では,革新的な深層学習に基づく量子センシング手法を提案する。
これにより、光学量子センサーは、非依存環境でハイゼンベルク限界(HL)に達することができる。
我々の発見は、光学量子センシングタスクを加速する新しいレンズを提供する。
論文 参考訳(メタデータ) (2023-11-13T09:46:05Z) - Expressibility-induced Concentration of Quantum Neural Tangent Kernels [4.561685127984694]
量子タンジェントカーネルモデルのトレーニング可能性と表現性の関係について検討する。
大域的損失関数に対して、大域的および局所的な量子符号化の両方の高表現性は、量子接核値の指数集中を0に導くことを厳密に証明する。
我々の発見は量子ニューラル・タンジェント・カーネルの重要な特徴を明らかにし、広い量子変動回路モデルの設計に有用な洞察を提供する。
論文 参考訳(メタデータ) (2023-11-08T19:00:01Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z) - Variational learning for quantum artificial neural networks [0.0]
まず、量子プロセッサ上での人工ニューロンとフィードフォワードニューラルネットワークの実装について、最近の一連の研究を概説する。
次に、変分アンサンプリングプロトコルに基づく効率的な個別量子ノードのオリジナル実現を提案する。
メモリ効率の高いフィードフォワードアーキテクチャとの完全な互換性を維持しながら、単一ニューロンの活性化確率を決定するのに必要な量子回路深さを効果的に削減する。
論文 参考訳(メタデータ) (2021-03-03T16:10:15Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
量子ウォークスを用いて量子情報拡散パターンを探索する量子探索プロトコルを設計する。
我々は、異常や古典的輸送を調査するために、コヒーレントな静的および動的障害に焦点を当てる。
以上の結果から,複雑なネットワークで発生する欠陥や摂動の情報を読み取る装置として,量子ウォーク(Quantum Walk)が考えられる。
論文 参考訳(メタデータ) (2020-10-20T20:03:19Z) - Quantum-enhanced data classification with a variational entangled sensor
network [3.1083620257082707]
絡み合ったセンサーネットワーク(SLAEN)によって補助される監視学習は、古典的な機械学習アルゴリズムによって訓練されたVQCを利用する、独立したパラダイムである。
我々の研究は、NISQ時代における量子化データ処理の新たな道のりを開拓している。
論文 参考訳(メタデータ) (2020-06-22T01:22:33Z) - Probing Criticality in Quantum Spin Chains with Neural Networks [0.0]
隠れた層を持たないニューラルネットワークでさえ、磁気秩序と乱れ相の区別を効果的に訓練できることが示される。
我々の結果は、相互作用する量子多体系の幅広いクラスに拡張され、多体量子物理学へのニューラルネットワークの広範な適用性を示す。
論文 参考訳(メタデータ) (2020-05-05T12:34:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。