論文の概要: Reconstructing Satellites in 3D from Amateur Telescope Images
- arxiv url: http://arxiv.org/abs/2404.18394v3
- Date: Sun, 13 Apr 2025 09:08:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 19:48:45.347976
- Title: Reconstructing Satellites in 3D from Amateur Telescope Images
- Title(参考訳): アマチュア望遠鏡画像による3次元衛星の再構成
- Authors: Zhiming Chang, Boyang Liu, Yifei Xia, Youming Guo, Boxin Shi, He Sun,
- Abstract要約: 本稿では,ハイブリッド画像前処理パイプラインを統合することで,障害を克服する新しい計算イメージングフレームワークを提案する。
我々は,中国の江東宇宙ステーションと国際宇宙ステーションの合成衛星データセットとオンスキー観測の両方にアプローチを検証した。
我々のフレームワークは地球からの高忠実度3D衛星監視を可能にし、宇宙状況認識のためのコスト効率の良い代替手段を提供する。
- 参考スコア(独自算出の注目度): 44.20773507571372
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Monitoring space objects is crucial for space situational awareness, yet reconstructing 3D satellite models from ground-based telescope images is challenging due to atmospheric turbulence, long observation distances, limited viewpoints, and low signal-to-noise ratios. In this paper, we propose a novel computational imaging framework that overcomes these obstacles by integrating a hybrid image pre-processing pipeline with a joint pose estimation and 3D reconstruction module based on controlled Gaussian Splatting (GS) and Branch-and-Bound (BnB) search. We validate our approach on both synthetic satellite datasets and on-sky observations of China's Tiangong Space Station and the International Space Station, achieving robust 3D reconstructions of low-Earth orbit satellites from ground-based data. Quantitative evaluations using SSIM, PSNR, LPIPS, and Chamfer Distance demonstrate that our method outperforms state-of-the-art NeRF-based approaches, and ablation studies confirm the critical role of each component. Our framework enables high-fidelity 3D satellite monitoring from Earth, offering a cost-effective alternative for space situational awareness. Project page: https://ai4scientificimaging.org/ReconstructingSatellites
- Abstract(参考訳): 宇宙オブジェクトの監視は、宇宙の状況認識に不可欠であるが、地上の望遠鏡画像から3次元衛星モデルを再構成することは、大気の乱流、長い観測距離、限られた視点、低信号対雑音比のために困難である。
本稿では,ハイブリッド画像前処理パイプラインと協調ポーズ推定と3次元再構成モジュールを統合し,ガウス・スティング(GS)とブランチ・アンド・バウンド(BnB)の探索を併用することで,これらの障害を克服する新しい計算イメージングフレームワークを提案する。
我々は,中国の江東宇宙ステーションと国際宇宙ステーションの合成衛星データセットとオンスキー観測の両方にアプローチを検証し,地上データから低地球軌道衛星の堅牢な3次元再構成を実現した。
SSIM, PSNR, LPIPS, およびChamfer Distanceを用いた定量的評価では, 提案手法は最先端のNeRFベースのアプローチよりも優れており, アブレーション研究により各コンポーネントの臨界的役割が確認されている。
我々のフレームワークは地球からの高忠実度3D衛星監視を可能にし、宇宙状況認識のためのコスト効率の良い代替手段を提供する。
プロジェクトページ:https://ai4scientificimaging.org/ReconstructingSatellites
関連論文リスト
- Satellite to GroundScape -- Large-scale Consistent Ground View Generation from Satellite Views [5.146618378243241]
本研究では,衛星ビューから生成された地上画像間の整合性を確保するために,新しいクロスビュー合成手法を提案する。
本手法は, 固定潜時拡散モデルに基づいて, 衛星誘導復調法と衛星時変復調法という2つの条件付きモジュールを導入する。
大規模な衛星地上データセットを10万対以上の視点で提供し,広範囲な地上環境や映像生成を容易にする。
論文 参考訳(メタデータ) (2025-04-22T10:58:42Z) - AerialMegaDepth: Learning Aerial-Ground Reconstruction and View Synthesis [57.249817395828174]
本研究では,3次元都市規模のメッシュからの擬似合成レンダリングと,実地レベルでのクラウドソース画像を組み合わせたスケーラブルなフレームワークを提案する。
擬似合成データは、幅広い空中視点をシミュレートする一方、実際のクラウドソース画像は、地上レベルの画像の視覚的忠実度を改善するのに役立つ。
このハイブリッドデータセットを使用して、いくつかの最先端のアルゴリズムを微調整し、実世界のゼロショット地上作業において大幅な改善を実現する。
論文 参考訳(メタデータ) (2025-04-17T17:57:05Z) - SA-Occ: Satellite-Assisted 3D Occupancy Prediction in Real World [19.190830406660826]
衛星支援型3次元占有予測モデルSA-Occを提案する。
歴史的だが容易に利用できる衛星画像とリアルタイムの応用を統合している。
最先端のパフォーマンス、特に単一フレームのメソッドで実現します。
論文 参考訳(メタデータ) (2025-03-20T17:54:29Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - SatSplatYOLO: 3D Gaussian Splatting-based Virtual Object Detection Ensembles for Satellite Feature Recognition [0.0]
本研究では、軌道上の未知の非協力衛星の成分のマッピングと高信頼度検出のためのアプローチを提案する。
我々は、衛星の3次元表現を学習し、ターゲットの仮想ビューをレンダリングし、仮想ビュー上でYOLOv5オブジェクト検出器をアンサンブルするために、加速3次元ガウススプラッティングを実装した。
論文 参考訳(メタデータ) (2024-06-04T17:54:20Z) - Advancing Applications of Satellite Photogrammetry: Novel Approaches for Built-up Area Modeling and Natural Environment Monitoring using Stereo/Multi-view Satellite Image-derived 3D Data [0.0]
この論文は、ステレオおよびマルチビュー衛星画像から得られた3次元地理空間データに基づく、いくつかの新しいアプローチを探求する。
衛星由来の3Dデータによる空間的・時間的課題に対処する新しいアプローチの4つの部分を紹介する。
概して、この論文は、都市や環境問題に対処する衛星フォトグラムの応用の可能性を示している。
論文 参考訳(メタデータ) (2024-04-18T20:02:52Z) - Few-shot point cloud reconstruction and denoising via learned Guassian splats renderings and fine-tuned diffusion features [52.62053703535824]
本稿では,少数の画像から点雲を再構成し,そのレンダリングから点雲を識別する手法を提案する。
制約条件下での再構成を改善するため,ハイブリッド表面と外観の相違点のトレーニングを規則化する。
これらの学習したフィルタを使って、3Dの監督なしに来る点雲ノイズを除去する方法を実証する。
論文 参考訳(メタデータ) (2024-04-01T13:38:16Z) - Towards 3D Vision with Low-Cost Single-Photon Cameras [24.711165102559438]
小型で省エネで低コストな単光子カメラによる計測に基づいて,任意のランベルト物体の3次元形状を再構成する手法を提案する。
我々の研究は、画像ベースモデリングとアクティブレンジスキャンの関連性を引き合いに出し、単光子カメラによる3Dビジョンに向けた一歩である。
論文 参考訳(メタデータ) (2024-03-26T15:40:05Z) - GeoGS3D: Single-view 3D Reconstruction via Geometric-aware Diffusion Model and Gaussian Splatting [81.03553265684184]
単視点画像から詳細な3Dオブジェクトを再構成するフレームワークであるGeoGS3Dを紹介する。
本稿では,GDS(Gaussian Divergence Significance)という新しい指標を提案する。
実験により、GeoGS3Dはビュー間で高い一貫性を持つ画像を生成し、高品質な3Dオブジェクトを再構成することを示した。
論文 参考訳(メタデータ) (2024-03-15T12:24:36Z) - Characterizing Satellite Geometry via Accelerated 3D Gaussian Splatting [0.0]
本稿では,3次元ガウス散乱に基づく軌道上の衛星のマッピング手法を提案する。
ループ型衛星モックアップにおけるモデルトレーニングと3次元レンダリング性能を実演する。
我々のモデルでは、未知の衛星の高品質な新しいビューを、従来のNeRFベースのアルゴリズムよりも2桁近く高速にトレーニングし、レンダリングすることが可能であることが示されている。
論文 参考訳(メタデータ) (2024-01-05T00:49:56Z) - 3D Reconstruction of Spherical Images based on Incremental Structure
from Motion [2.6432771146480283]
本研究では, 球面対応を用いた相対配向アルゴリズム, シーンと球面間の3次元対応を用いた絶対配向, BA最適化のためのコスト関数について検討した。
上記のアルゴリズムを用いて,球面画像に対して段階的SfM(Structure from Motion)ワークフローを提案する。
論文 参考訳(メタデータ) (2023-06-22T09:49:28Z) - 3D reconstruction from spherical images: A review of techniques,
applications, and prospects [2.6432771146480283]
3次元再構成は、現代のフォトグラムシステムにおいてますます重要な役割を担っている。
プロ用および消費者向けの球面カメラの急速な進化と広範囲な利用により、球面画像は都市と屋内のシーンの3Dモデリングに大きな可能性を示している。
本研究は,データ取得,特徴検出とマッチング,画像配向,密マッチングの観点から,球面画像の3次元再構成技術の現状を詳細に調査する。
論文 参考訳(メタデータ) (2023-02-09T08:45:27Z) - Satellite Image Based Cross-view Localization for Autonomous Vehicle [59.72040418584396]
本稿では,市販の高精細衛星画像を使用可能な地図として利用することにより,良好な精度でクロスビュー車両のローカライゼーションを実現することができることを示す。
本手法はKITTIとFord Multi-AVの季節データセットを地上ビューとして,Google Mapsを衛星ビューとして検証した。
論文 参考訳(メタデータ) (2022-07-27T13:16:39Z) - Neural Scene Representation for Locomotion on Structured Terrain [56.48607865960868]
本研究では,都市環境を横断する移動ロボットの局所的な地形を再構築する学習手法を提案する。
搭載されたカメラとロボットの軌道からの深度測定のストリームを用いて、ロボットの近傍の地形を推定する。
ノイズ測定とカメラ配置の盲点からの大量の欠落データにもかかわらず,シーンを忠実に再構築する3次元再構成モデルを提案する。
論文 参考訳(メタデータ) (2022-06-16T10:45:17Z) - Urban Radiance Fields [77.43604458481637]
本研究では,都市屋外環境における世界地図作成によく利用されるスキャニングプラットフォームによって収集されたデータから3次元再構成と新しいビュー合成を行う。
提案手法は、制御された環境下での小さなシーンのための現実的な新しい画像の合成を実証したニューラルラジアンス場を拡張している。
これら3つのエクステンションはそれぞれ、ストリートビューデータの実験において、大幅なパフォーマンス改善を提供する。
論文 参考訳(メタデータ) (2021-11-29T15:58:16Z) - Towards Non-Line-of-Sight Photography [48.491977359971855]
非視線イメージング(NLOS)は、隠された物体からの多重バウンス間接反射を捉えることに基づいている。
アクティブなNLOSイメージングシステムは、シーンを通しての光の飛行時間の捕捉に依存している。
我々はNLOS写真と呼ばれる新しい問題定式化を提案し、この欠陥に特に対処する。
論文 参考訳(メタデータ) (2021-09-16T08:07:13Z) - 3D Surface Reconstruction From Multi-Date Satellite Images [11.84274417463238]
本研究では,複数の衛星画像から点雲を再構成することのできるStructure from Motion (SfM) ベースのパイプラインの拡張を提案する。
衛星画像のコンテキストにおいて、最先端メッシュ再構成アルゴリズムを利用するために必須となるいくつかのステップについて、詳細な説明を提供する。
提案したパイプラインと現在のメッシュアルゴリズムが組み合わさって、完全性と中央値エラーの点で最先端のクラウド再構築アルゴリズムより優れていることを示す。
論文 参考訳(メタデータ) (2021-02-04T09:23:21Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
低軌道軌道(LEO)衛星のメガコンステレーションは、低レイテンシで長距離通信を可能にする可能性がある。
軌道上の星座から選択されたLEO衛星を用いて、2つの遠距離地上端末間でパケットを転送する問題について検討する。
エンドツーエンドのデータレートを最大化するためには、衛星アソシエーションとHAPロケーションを最適化する必要がある。
本稿では, 深部強化学習(DRL)と新しい動作次元低減技術を用いてこの問題に対処する。
論文 参考訳(メタデータ) (2020-05-26T05:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。