Low-Overhead Defect-Adaptive Surface Code with Bandage-Like Super-Stabilizers
- URL: http://arxiv.org/abs/2404.18644v1
- Date: Mon, 29 Apr 2024 12:24:43 GMT
- Title: Low-Overhead Defect-Adaptive Surface Code with Bandage-Like Super-Stabilizers
- Authors: Zuolin Wei, Tan He, Yangsen Ye, Dachao Wu, Yiming Zhang, Youwei Zhao, Weiping Lin, He-Liang Huang, Xiaobo Zhu, Jian-Wei Pan,
- Abstract summary: We introduce an automatic adapter to implement the surface code on defective lattices.
Unlike previous approaches, this adapter leverages newly proposed bandage-like super-stabilizers to save more qubits.
Our work presents a low-overhead, automated solution to the challenge of adapting the surface code to defects.
- Score: 4.146058318261507
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To make practical quantum algorithms work, large-scale quantum processors protected by error-correcting codes are required to resist noise and ensure reliable computational outcomes. However, a major challenge arises from defects in processor fabrication, as well as occasional losses or cosmic rays during the computing process, all of which can lead to qubit malfunctions and disrupt error-correcting codes' normal operations. In this context, we introduce an automatic adapter to implement the surface code on defective lattices. Unlike previous approaches, this adapter leverages newly proposed bandage-like super-stabilizers to save more qubits when defects are clustered, thus enhancing the code distance and reducing super-stabilizer weight. For instance, in comparison with earlier methods, with a code size of 27 and a random defect rate of 2\%, the disabled qubits decrease by $1/3$, and the average preserved code distance increases by 63\%. This demonstrates a significant reduction in overhead when handling defects using our approach, and this advantage amplifies with increasing processor size and defect rates. Our work presents a low-overhead, automated solution to the challenge of adapting the surface code to defects, an essential step towards scaling up the construction of large-scale quantum computers for practical applications.
Related papers
- Accelerating Error Correction Code Transformers [56.75773430667148]
We introduce a novel acceleration method for transformer-based decoders.
We achieve a 90% compression ratio and reduce arithmetic operation energy consumption by at least 224 times on modern hardware.
arXiv Detail & Related papers (2024-10-08T11:07:55Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
A foundational assumption of quantum gates theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance.
Here we report on a strategy that can overcome such problems.
We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunablebits to execute single qubit while superconducting errors.
arXiv Detail & Related papers (2023-08-04T13:39:46Z) - Codesign of quantum error-correcting codes and modular chiplets in the presence of defects [3.9145409368937867]
Fabrication errors pose a challenge in scaling up solid-state quantum devices to the sizes required for fault-tolerant applications.
We simulate the surface code adapted to qubit arrays with arbitrarily distributed defects to find metrics that characterize how defects affect fidelity.
We find that an optimal choice of chiplet size, based on the defect rate and target fidelity, is essential to limiting any additional error correction overhead due to defects.
arXiv Detail & Related papers (2023-04-29T01:06:52Z) - Fault Tolerant Non-Clifford State Preparation for Arbitrary Rotations [3.47670594338385]
We propose a postselection-based algorithm to efficiently prepare resource states for gate teleportation.
Our algorithm achieves fault tolerance, demonstrating the exponential suppression of logical errors with code distance.
Our approach presents a promising path to reducing the resource requirement for quantum algorithms on error-corrected and noisy intermediate-scale quantum computers.
arXiv Detail & Related papers (2023-03-30T13:46:52Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Quantum computation on a 19-qubit wide 2d nearest neighbour qubit array [59.24209911146749]
This paper explores the relationship between the width of a qubit lattice constrained in one dimension and physical thresholds.
We engineer an error bias at the lowest level of encoding using the surface code.
We then address this bias at a higher level of encoding using a lattice-surgery surface code bus.
arXiv Detail & Related papers (2022-12-03T06:16:07Z) - Adaptive surface code for quantum error correction in the presence of
temporary or permanent defects [0.0]
We show that combining an appropriate defect detection algorithm and a quarantine of the identified zone allows one to preserve the advantage of quantum error correction at finite code sizes.
Results pave the way to the experimental implementation of large-scale quantum computers where defects will be inevitable.
arXiv Detail & Related papers (2022-11-15T19:39:49Z) - Scalable Neural Decoder for Topological Surface Codes [0.0]
We present a neural network based decoder for a family of stabilizer codes subject to noise and syndrome measurement errors.
The key innovation is to autodecode error syndromes on small scales by shifting a preprocessing window over the underlying code.
We show that such a preprocessing step allows to effectively reduce the error rate by up to two orders of magnitude in practical applications.
arXiv Detail & Related papers (2021-01-18T19:02:09Z) - Deterministic correction of qubit loss [48.43720700248091]
Loss of qubits poses one of the fundamental obstacles towards large-scale and fault-tolerant quantum information processors.
We experimentally demonstrate the implementation of a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code.
arXiv Detail & Related papers (2020-02-21T19:48:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.