More RLHF, More Trust? On The Impact of Human Preference Alignment On Language Model Trustworthiness
- URL: http://arxiv.org/abs/2404.18870v1
- Date: Mon, 29 Apr 2024 17:00:53 GMT
- Title: More RLHF, More Trust? On The Impact of Human Preference Alignment On Language Model Trustworthiness
- Authors: Aaron J. Li, Satyapriya Krishna, Himabindu Lakkaraju,
- Abstract summary: This study investigates how models that have been aligned with general-purpose preference data on helpfulness and harmlessness perform across five trustworthiness verticals.
We discover that the improvement in trustworthiness by RLHF is far from guaranteed, and there exists a complex interplay between preference data, alignment algorithms, and specific trustworthiness aspects.
- Score: 24.843692458375436
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The surge in Large Language Models (LLMs) development has led to improved performance on cognitive tasks as well as an urgent need to align these models with human values in order to safely exploit their power. Despite the effectiveness of preference learning algorithms like Reinforcement Learning From Human Feedback (RLHF) in aligning human preferences, their assumed improvements on model trustworthiness haven't been thoroughly testified. Toward this end, this study investigates how models that have been aligned with general-purpose preference data on helpfulness and harmlessness perform across five trustworthiness verticals: toxicity, stereotypical bias, machine ethics, truthfulness, and privacy. For model alignment, we focus on three widely used RLHF variants: Supervised Finetuning (SFT), Proximal Policy Optimization (PPO), and Direct Preference Optimization (DPO). Through extensive empirical investigations, we discover that the improvement in trustworthiness by RLHF is far from guaranteed, and there exists a complex interplay between preference data, alignment algorithms, and specific trustworthiness aspects. Together, our results underscore the need for more nuanced approaches for model alignment. By shedding light on the intricate dynamics of these components within model alignment, we hope this research will guide the community towards developing language models that are both capable and trustworthy.
Related papers
- Seeing Eye to AI: Human Alignment via Gaze-Based Response Rewards for Large Language Models [46.09562860220433]
We introduce GazeReward, a novel framework that integrates implicit feedback -- and specifically eye-tracking (ET) data -- into the Reward Model (RM)
Our approach significantly improves the accuracy of the RM on established human preference datasets.
arXiv Detail & Related papers (2024-10-02T13:24:56Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
We propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss.
The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-09-26T12:37:26Z) - Bi-Factorial Preference Optimization: Balancing Safety-Helpfulness in Language Models [94.39278422567955]
Fine-tuning large language models (LLMs) on human preferences has proven successful in enhancing their capabilities.
However, ensuring the safety of LLMs during the fine-tuning remains a critical concern.
We propose a supervised learning framework called Bi-Factorial Preference Optimization (BFPO) to address this issue.
arXiv Detail & Related papers (2024-08-27T17:31:21Z) - Exploratory Preference Optimization: Harnessing Implicit Q*-Approximation for Sample-Efficient RLHF [82.7679132059169]
Reinforcement learning from human feedback has emerged as a central tool for language model alignment.
We propose a new algorithm for online exploration in RLHF, Exploratory Preference Optimization (XPO)
XPO enjoys the strongest known provable guarantees and promising empirical performance.
arXiv Detail & Related papers (2024-05-31T17:39:06Z) - MaxMin-RLHF: Towards Equitable Alignment of Large Language Models with
Diverse Human Preferences [101.57443597426374]
Reinforcement Learning from Human Feedback (RLHF) aligns language models to human preferences by employing a singular reward model derived from preference data.
We learn a mixture of preference distributions via an expectation-maximization algorithm to better represent diverse human preferences.
Our algorithm achieves an average improvement of more than 16% in win-rates over conventional RLHF algorithms.
arXiv Detail & Related papers (2024-02-14T03:56:27Z) - Active Preference Learning for Large Language Models [12.093302163058436]
We develop an active learning strategy for DPO to make better use of preference labels.
We propose a practical acquisition function for prompt/completion pairs based on the predictive entropy of the language model.
We demonstrate how our approach improves both the rate of learning and final performance of fine-tuning on pairwise preference data.
arXiv Detail & Related papers (2024-02-12T23:09:00Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
We introduce a series of novel methods to mitigate the influence of incorrect and ambiguous preferences in the dataset.
We also introduce contrastive learning to enhance the ability of reward models to distinguish between chosen and rejected responses.
arXiv Detail & Related papers (2024-01-11T17:56:59Z) - Aligning Large Language Models with Human Preferences through Representation Engineering [41.81020951061438]
Drawing inspiration from the emerging field of representation engineering (RepE), this study aims to identify relevant representations for high-level human preferences embedded in patterns of activity within an LLM.
This novel approach, denoted as Representation Alignment from Human Feedback (RAHF), proves to be effective, computationally efficient, and easy to implement.
arXiv Detail & Related papers (2023-12-26T11:01:36Z) - Direct Preference Optimization: Your Language Model is Secretly a Reward Model [119.65409513119963]
We introduce a new parameterization of the reward model in RLHF that enables extraction of the corresponding optimal policy in closed form.
The resulting algorithm, which we call Direct Preference Optimization (DPO), is stable, performant, and computationally lightweight.
Our experiments show that DPO can fine-tune LMs to align with human preferences as well as or better than existing methods.
arXiv Detail & Related papers (2023-05-29T17:57:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.