論文の概要: DGE: Direct Gaussian 3D Editing by Consistent Multi-view Editing
- arxiv url: http://arxiv.org/abs/2404.18929v3
- Date: Thu, 28 Nov 2024 17:00:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:16:31.151166
- Title: DGE: Direct Gaussian 3D Editing by Consistent Multi-view Editing
- Title(参考訳): DGE: 一貫性のあるマルチビュー編集による直接ガウス3D編集
- Authors: Minghao Chen, Iro Laina, Andrea Vedaldi,
- Abstract要約: オープンな言語命令に基づいて3Dオブジェクトやシーンを編集する際の問題点を考察する。
この問題に対する一般的なアプローチは、3D編集プロセスをガイドするために2Dイメージジェネレータまたはエディタを使用することである。
このプロセスは、コストのかかる3D表現の反復的な更新を必要とするため、しばしば非効率である。
- 参考スコア(独自算出の注目度): 72.54566271694654
- License:
- Abstract: We consider the problem of editing 3D objects and scenes based on open-ended language instructions. A common approach to this problem is to use a 2D image generator or editor to guide the 3D editing process, obviating the need for 3D data. However, this process is often inefficient due to the need for iterative updates of costly 3D representations, such as neural radiance fields, either through individual view edits or score distillation sampling. A major disadvantage of this approach is the slow convergence caused by aggregating inconsistent information across views, as the guidance from 2D models is not multi-view consistent. We thus introduce the Direct Gaussian Editor (DGE), a method that addresses these issues in two stages. First, we modify a given high-quality image editor like InstructPix2Pix to be multi-view consistent. To do so, we propose a training-free approach that integrates cues from the 3D geometry of the underlying scene. Second, given a multi-view consistent edited sequence of images, we directly and efficiently optimize the 3D representation, which is based on 3D Gaussian Splatting. Because it avoids incremental and iterative edits, DGE is significantly more accurate and efficient than existing approaches and offers additional benefits, such as enabling selective editing of parts of the scene.
- Abstract(参考訳): オープンな言語命令に基づいて3Dオブジェクトやシーンを編集する際の問題点を考察する。
この問題に対する一般的なアプローチは、3D画像生成装置やエディタを使って3D編集プロセスをガイドし、3Dデータの必要性を回避することである。
しかし、このプロセスは、個々のビュー編集や蒸留サンプリングによって、神経放射場のような高価な3D表現を反復的に更新する必要があるため、しばしば非効率である。
このアプローチの大きな欠点は、2Dモデルからのガイダンスが複数ビューの一貫性がないため、ビュー間で一貫性のない情報を集約することによって生じる緩やかな収束である。
そこで我々は,これらの問題を2段階に解決する手法であるDirect Gaussian Editor (DGE)を導入する。
まず、InstructPix2Pixのような高品質の画像エディタをマルチビュー一貫性に修正する。
そこで本研究では,基礎となるシーンの3次元幾何学からの手がかりを取り入れた,トレーニング不要なアプローチを提案する。
第2に,複数ビューで一貫した画像列が与えられた場合,3次元ガウススプラッティングに基づく3次元表現を直接的かつ効率的に最適化する。
インクリメンタルで反復的な編集を避けるため、DGEは既存のアプローチよりもはるかに正確で効率的であり、シーンの一部を選択的に編集できるなど追加の利点がある。
関連論文リスト
- 3D Gaussian Editing with A Single Image [19.662680524312027]
本稿では,3次元ガウシアンスプラッティングをベースとしたワンイメージ駆動の3Dシーン編集手法を提案する。
提案手法は,ユーザが指定した視点から描画した画像の編集版に合わせるために,3次元ガウスを最適化することを学ぶ。
実験により, 幾何学的詳細処理, 長距離変形, 非剛性変形処理における本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-08-14T13:17:42Z) - TIGER: Text-Instructed 3D Gaussian Retrieval and Coherent Editing [12.50147114409895]
本稿では,テキストによる3Dガウス検索と編集のための体系的アプローチ,すなわちTIGERを提案する。
本稿では,2次元画像編集拡散モデルと多視点拡散モデルを集約したコヒーレントスコア蒸留(CSD)を提案する。
論文 参考訳(メタデータ) (2024-05-23T11:37:17Z) - DragGaussian: Enabling Drag-style Manipulation on 3D Gaussian Representation [57.406031264184584]
DragGaussianは、3D Gaussian Splattingをベースにした3Dオブジェクトのドラッグ編集フレームワークである。
我々の貢献は、新しいタスクの導入、インタラクティブなポイントベース3D編集のためのDragGaussianの開発、質的かつ定量的な実験によるその効果の包括的検証などである。
論文 参考訳(メタデータ) (2024-05-09T14:34:05Z) - View-Consistent 3D Editing with Gaussian Splatting [50.6460814430094]
View-Consistent Editing (VcEdit)は、3DGSをシームレスに画像編集プロセスに組み込む新しいフレームワークである。
一貫性モジュールを反復パターンに組み込むことで、VcEditはマルチビューの不整合の問題を十分に解決する。
論文 参考訳(メタデータ) (2024-03-18T15:22:09Z) - GaussCtrl: Multi-View Consistent Text-Driven 3D Gaussian Splatting Editing [38.948892064761914]
GaussCtrlは、3D Gaussian Splatting(3DGS)によって再構成された3Dシーンを編集するテキスト駆動方式である。
私たちの重要な貢献は、複数ビューの一貫性のある編集であり、1つの画像を反復的に編集する代わりに、すべての画像を一緒に編集できる。
論文 参考訳(メタデータ) (2024-03-13T17:35:28Z) - Efficient-NeRF2NeRF: Streamlining Text-Driven 3D Editing with Multiview
Correspondence-Enhanced Diffusion Models [83.97844535389073]
3Dコンテンツ編集の普及を妨げている大きな障害は、その時間集約的な処理である。
共振器の正規化を拡散モデルに組み込むことで,3次元編集のプロセスを大幅に高速化できることを示す。
多くのシナリオにおいて,提案手法はベースライン法と比較して10$times$の高速化を実現し,2分で3Dシーンの編集を完了させる。
論文 参考訳(メタデータ) (2023-12-13T23:27:17Z) - Learning Naturally Aggregated Appearance for Efficient 3D Editing [94.47518916521065]
カラーフィールドを2次元の鮮明なアグリゲーションに置き換えることを提案する。
歪み効果を回避し、簡便な編集を容易にするため、3Dの点をテクスチャルックアップのために2Dピクセルにマッピングする投影場を標準画像に補完する。
私たちの表現はAGAPと呼ばれ、再最適化を必要とせず、様々な3D編集方法(スタイル化、インタラクティブな描画、コンテンツ抽出など)をうまくサポートしています。
論文 参考訳(メタデータ) (2023-12-11T18:59:31Z) - GaussianEditor: Swift and Controllable 3D Editing with Gaussian
Splatting [66.08674785436612]
3D編集は、ゲームや仮想現実など、多くの分野で重要な役割を担っている。
メッシュやポイントクラウドのような表現に依存した従来の3D編集手法は、複雑なシーンを現実的に描写するのに不足することが多い。
本稿では,新しい3D表現であるGaussian Splatting(GS)に基づく,革新的で効率的な3D編集アルゴリズムであるGaussianEditorを提案する。
論文 参考訳(メタデータ) (2023-11-24T14:46:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。