論文の概要: Automated Construction of Theme-specific Knowledge Graphs
- arxiv url: http://arxiv.org/abs/2404.19146v1
- Date: Mon, 29 Apr 2024 23:14:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 15:53:21.678706
- Title: Automated Construction of Theme-specific Knowledge Graphs
- Title(参考訳): テーマ固有の知識グラフの自動構築
- Authors: Linyi Ding, Sizhe Zhou, Jinfeng Xiao, Jiawei Han,
- Abstract要約: テーマ固有コーパスから構築したテーマ固有知識グラフ(テーマKG)を提案する。
我々は、ThemeKG構築のための教師なしフレームワーク(TKGCon)を設計する。
テーマ固有のKGを段階的に構築することにより、GPT-4より優れ、正確な実体や関係を一貫して識別できる。
- 参考スコア(独自算出の注目度): 21.68957334046064
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite widespread applications of knowledge graphs (KGs) in various tasks such as question answering and intelligent conversational systems, existing KGs face two major challenges: information granularity and deficiency in timeliness. These hinder considerably the retrieval and analysis of in-context, fine-grained, and up-to-date knowledge from KGs, particularly in highly specialized themes (e.g., specialized scientific research) and rapidly evolving contexts (e.g., breaking news or disaster tracking). To tackle such challenges, we propose a theme-specific knowledge graph (i.e., ThemeKG), a KG constructed from a theme-specific corpus, and design an unsupervised framework for ThemeKG construction (named TKGCon). The framework takes raw theme-specific corpus and generates a high-quality KG that includes salient entities and relations under the theme. Specifically, we start with an entity ontology of the theme from Wikipedia, based on which we then generate candidate relations by Large Language Models (LLMs) to construct a relation ontology. To parse the documents from the theme corpus, we first map the extracted entity pairs to the ontology and retrieve the candidate relations. Finally, we incorporate the context and ontology to consolidate the relations for entity pairs. We observe that directly prompting GPT-4 for theme-specific KG leads to inaccurate entities (such as "two main types" as one entity in the query result) and unclear (such as "is", "has") or wrong relations (such as "have due to", "to start"). In contrast, by constructing the theme-specific KG step by step, our model outperforms GPT-4 and could consistently identify accurate entities and relations. Experimental results also show that our framework excels in evaluations compared with various KG construction baselines.
- Abstract(参考訳): 質問応答やインテリジェントな会話システムといった様々なタスクに知識グラフ(KG)が広く応用されているにもかかわらず、既存のKGは2つの大きな課題に直面している。
これらのことは、特に高度に専門化されたテーマ(例えば、専門的な科学的研究)と急速に進化する状況(例えば、ニュースや災害追跡)において、文脈内、微粒化、そしてKGからの最新の知識の検索と分析をかなり妨げている。
このような課題に対処するため、テーマ固有コーパスから構築されたKGであるテーマ固有知識グラフ(ThemeKG)を提案し、テーマ固有コーパスのための教師なしフレームワーク(TKGCon)を設計する。
このフレームワークは、テーマ固有の生のコーパスを取り込み、テーマの下に健全な実体と関係を含む高品質なKGを生成する。
具体的には、ウィキペディアのテーマの実体オントロジーから始め、大言語モデル(LLM)によって候補関係を生成し、関係オントロジーを構築する。
テーマコーパスから文書を解析するために、抽出したエンティティペアをオントロジーにマッピングし、候補関係を検索する。
最後に、コンテキストとオントロジーを組み込んで、エンティティペアの関係を統合する。
テーマ固有のKGに対してGPT-4を直接促すことは、不正確なエンティティ(クエリ結果の1つのエンティティとして"2つのメインタイプ"など)、不正確なエンティティ("is"、"has"など)、誤った関係("have due"、"to start"など)につながることを観察する。
対照的に、テーマ固有のKGを段階的に構築することで、我々のモデルはGPT-4より優れ、常に正確な実体や関係を識別できる。
また, このフレームワークは, 各種KG構築ベースラインと比較して, 性能評価に優れることを示した。
関連論文リスト
- A Prompt-Based Knowledge Graph Foundation Model for Universal In-Context Reasoning [17.676185326247946]
そこで本研究では,テキスト内学習,すなわちKG-ICLを介し,プロンプトに基づくKGファウンデーションモデルを提案する。
クエリにおけるエンティティや関係を発見できないような一般化機能を備えたプロンプトグラフを符号化するために,まず統一トークン化器を提案する。
そこで我々は,プロンプトエンコーディングとKG推論を行う2つのメッセージパッシングニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2024-10-16T06:47:18Z) - Context Graph [8.02985792541121]
本稿では,大規模言語モデル(LLM)を活用して候補エンティティや関連するコンテキストを検索する,コンテキストグラフ推論のtextbfCGR$3$パラダイムを提案する。
実験の結果、CGR$3$はKG完了(KGC)およびKG質問応答(KGQA)タスクの性能を著しく向上させることが示された。
論文 参考訳(メタデータ) (2024-06-17T02:59:19Z) - KG-GPT: A General Framework for Reasoning on Knowledge Graphs Using
Large Language Models [18.20425100517317]
本稿では,知識グラフを用いたタスクに対して,大規模言語モデルを活用するフレームワークであるKG-GPTを提案する。
KG-GPTは文の分割、関連するグラフコンポーネントの検索、論理的結論の導出という3つのステップから構成される。
KGベースの事実検証とKGQAベンチマークを用いてKG-GPTを評価する。
論文 参考訳(メタデータ) (2023-10-17T12:51:35Z) - Knowledge Graphs Querying [4.548471481431569]
我々は、KGクエリのために開発された様々な学際的なトピックと概念を統一することを目的としている。
KGとクエリ埋め込み、マルチモーダルKG、KG-QAの最近の進歩は、ディープラーニング、IR、NLP、コンピュータビジョンドメインから来ている。
論文 参考訳(メタデータ) (2023-05-23T19:32:42Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
KGQA(Multi-hop Question Answering over Knowledge Graph)は、自然言語の質問で言及されているトピックエンティティから、複数のホップを持つ回答エンティティを見つけることを目的としている。
我々は、モデルアーキテクチャとパラメータ学習の両方において、検索と推論を統合することで、マルチホップKGQAタスクの新しいアプローチであるUniKGQAを提案する。
論文 参考訳(メタデータ) (2022-12-02T04:08:09Z) - Query-Specific Knowledge Graphs for Complex Finance Topics [6.599344783327053]
ドメインの専門家が挑戦的な質問を作成できるCODECデータセットに重点を置いています。
最先端のランキングシステムには改善の余地があることが示される。
実体と文書の関連性は正の相関関係にあることを示す。
論文 参考訳(メタデータ) (2022-11-08T10:21:13Z) - Reasoning over Multi-view Knowledge Graphs [59.99051368907095]
ROMAは、マルチビューKG上で論理クエリに応答する新しいフレームワークである。
大規模(数百万の事実など)のKGや粒度の細かいビューまでスケールする。
トレーニング中に観測されていない構造やKGビューのクエリを一般化する。
論文 参考訳(メタデータ) (2022-09-27T21:32:20Z) - Geometry Interaction Knowledge Graph Embeddings [153.69745042757066]
ユークリッド空間,双曲空間,超球空間間の空間構造を対話的に学習する幾何学的相互作用知識グラフ埋め込み(GIE)を提案する。
提案したGIEは、よりリッチなリレーショナル情報、モデルキー推論パターンをキャプチャし、エンティティ間の表現的セマンティックマッチングを可能にする。
論文 参考訳(メタデータ) (2022-06-24T08:33:43Z) - Collaborative Knowledge Graph Fusion by Exploiting the Open Corpus [59.20235923987045]
知識表現の質を維持しながら、新たに収穫した3倍の知識グラフを豊かにすることは困難である。
本稿では,付加コーパスから得られる情報を用いてKGを精製するシステムを提案する。
論文 参考訳(メタデータ) (2022-06-15T12:16:10Z) - UnifiedSKG: Unifying and Multi-Tasking Structured Knowledge Grounding
with Text-to-Text Language Models [170.88745906220174]
本稿では,21のSKGタスクをテキスト・テキスト・フォーマットに統一するSKGフレームワークを提案する。
我々は,UnifiedSKGが21タスクのほぼすべてにおいて最先端のパフォーマンスを達成することを示す。
また、UnifiedSKGを用いて、SKGタスク間の変異をコードする構造化知識に関する一連の実験を行う。
論文 参考訳(メタデータ) (2022-01-16T04:36:18Z) - On the Role of Conceptualization in Commonsense Knowledge Graph
Construction [59.39512925793171]
アトミックやASERのような常識知識グラフ(CKG)は、従来のKGと大きく異なる。
本稿では, CKG の概念化手法を紹介し, テキストに記述されたエンティティを特定の概念のインスタンスとみなすか, あるいはその逆を例に紹介する。
提案手法は, 可塑性三重項を効果的に同定し, 新たなノードの3重項と, 多様性と新規性の両端項によってKGを拡張できる。
論文 参考訳(メタデータ) (2020-03-06T14:35:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。