A Minimal Set of Parameters Based Depth-Dependent Distortion Model and Its Calibration Method for Stereo Vision Systems
- URL: http://arxiv.org/abs/2404.19242v2
- Date: Wed, 1 May 2024 15:42:09 GMT
- Title: A Minimal Set of Parameters Based Depth-Dependent Distortion Model and Its Calibration Method for Stereo Vision Systems
- Authors: Xin Ma, Puchen Zhu, Xiao Li, Xiaoyin Zheng, Jianshu Zhou, Xuchen Wang, Kwok Wai Samuel Au,
- Abstract summary: We propose a minimal set of parameters based depth-dependent distortion model (MDM)
The MDM considers the radial and decentering distortions of the lens to improve the accuracy of stereo vision systems.
We present an easy and flexible calibration method for the MDM of stereo vision systems with a commonly used planar pattern.
- Score: 6.486261075483768
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Depth position highly affects lens distortion, especially in close-range photography, which limits the measurement accuracy of existing stereo vision systems. Moreover, traditional depth-dependent distortion models and their calibration methods have remained complicated. In this work, we propose a minimal set of parameters based depth-dependent distortion model (MDM), which considers the radial and decentering distortions of the lens to improve the accuracy of stereo vision systems and simplify their calibration process. In addition, we present an easy and flexible calibration method for the MDM of stereo vision systems with a commonly used planar pattern, which requires cameras to observe the planar pattern in different orientations. The proposed technique is easy to use and flexible compared with classical calibration techniques for depth-dependent distortion models in which the lens must be perpendicular to the planar pattern. The experimental validation of the MDM and its calibration method showed that the MDM improved the calibration accuracy by 56.55% and 74.15% compared with the Li's distortion model and traditional Brown's distortion model. Besides, an iteration-based reconstruction method is proposed to iteratively estimate the depth information in the MDM during three-dimensional reconstruction. The results showed that the accuracy of the iteration-based reconstruction method was improved by 9.08% compared with that of the non-iteration reconstruction method.
Related papers
- Automatic Calibration of a Multi-Camera System with Limited Overlapping Fields of View for 3D Surgical Scene Reconstruction [0.7165255458140439]
The purpose of this study is to develop an automated and accurate external camera calibration method for 3D surgical scene reconstruction (3D-SSR)
We contribute a novel, fast, and fully automatic calibration method based on the projection of multi-scale markers (MSMs) using a ceiling-mounted projector.
arXiv Detail & Related papers (2025-01-27T17:10:33Z) - W-HMR: Monocular Human Mesh Recovery in World Space with Weak-Supervised Calibration [57.37135310143126]
Previous methods for 3D motion recovery from monocular images often fall short due to reliance on camera coordinates.
We introduce W-HMR, a weak-supervised calibration method that predicts "reasonable" focal lengths based on body distortion information.
We also present the OrientCorrect module, which corrects body orientation for plausible reconstructions in world space.
arXiv Detail & Related papers (2023-11-29T09:02:07Z) - Visual-LiDAR Odometry and Mapping with Monocular Scale Correction and
Visual Bootstrapping [0.7734726150561089]
We present a novel visual-LiDAR odometry and mapping method with low-drift characteristics.
The proposed method is based on two popular approaches, ORB-SLAM and A-LOAM, with monocular scale correction.
Our method significantly outperforms standalone ORB-SLAM2 and A-LOAM.
arXiv Detail & Related papers (2023-04-18T13:20:33Z) - Deep Learning-Based Defect Classification and Detection in SEM Images [1.9206693386750882]
In particular, we train RetinaNet models using different ResNet, VGGNet architectures as backbone.
We propose a preference-based ensemble strategy to combine the output predictions from different models in order to achieve better performance on classification and detection of defects.
arXiv Detail & Related papers (2022-06-20T16:34:11Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
We derive a model for the covariance of the visual residuals in multi-view SfM, odometry and SLAM setups.
We validate our model with synthetic and real data and integrate it into photometric and feature-based Bundle Adjustment.
arXiv Detail & Related papers (2022-02-01T21:21:56Z) - Camera Distortion-aware 3D Human Pose Estimation in Video with
Optimization-based Meta-Learning [23.200130129530653]
Existing 3D human pose estimation algorithms trained on distortion-free datasets suffer performance drop when applied to new scenarios with a specific camera distortion.
We propose a simple yet effective model for 3D human pose estimation in video that can quickly adapt to any distortion environment.
arXiv Detail & Related papers (2021-11-30T01:35:04Z) - SIR: Self-supervised Image Rectification via Seeing the Same Scene from
Multiple Different Lenses [82.56853587380168]
We propose a novel self-supervised image rectification (SIR) method based on an important insight that the rectified results of distorted images of the same scene from different lens should be the same.
We leverage a differentiable warping module to generate the rectified images and re-distorted images from the distortion parameters.
Our method achieves comparable or even better performance than the supervised baseline method and representative state-of-the-art methods.
arXiv Detail & Related papers (2020-11-30T08:23:25Z) - Wide-angle Image Rectification: A Survey [86.36118799330802]
wide-angle images contain distortions that violate the assumptions underlying pinhole camera models.
Image rectification, which aims to correct these distortions, can solve these problems.
We present a detailed description and discussion of the camera models used in different approaches.
Next, we review both traditional geometry-based image rectification methods and deep learning-based methods.
arXiv Detail & Related papers (2020-10-30T17:28:40Z) - PaMIR: Parametric Model-Conditioned Implicit Representation for
Image-based Human Reconstruction [67.08350202974434]
We propose Parametric Model-Conditioned Implicit Representation (PaMIR), which combines the parametric body model with the free-form deep implicit function.
We show that our method achieves state-of-the-art performance for image-based 3D human reconstruction in the cases of challenging poses and clothing types.
arXiv Detail & Related papers (2020-07-08T02:26:19Z) - D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual
Odometry [57.5549733585324]
D3VO is a novel framework for monocular visual odometry that exploits deep networks on three levels -- deep depth, pose and uncertainty estimation.
We first propose a novel self-supervised monocular depth estimation network trained on stereo videos without any external supervision.
We model the photometric uncertainties of pixels on the input images, which improves the depth estimation accuracy.
arXiv Detail & Related papers (2020-03-02T17:47:13Z) - A Two-step Calibration Method for Unfocused Light Field Camera Based on
Projection Model Analysis [8.959346460518226]
The proposed method is able to reuse traditional camera calibration methods for the direction parameter set.
The accuracy and robustness of the proposed method outperforms its counterparts under various benchmark criteria.
arXiv Detail & Related papers (2020-01-11T10:37:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.