Bayesian Functional Connectivity and Graph Convolutional Network for Working Memory Load Classification
- URL: http://arxiv.org/abs/2404.19467v1
- Date: Tue, 30 Apr 2024 11:31:07 GMT
- Title: Bayesian Functional Connectivity and Graph Convolutional Network for Working Memory Load Classification
- Authors: Harshini Gangapuram, Vidya Manian,
- Abstract summary: The present study introduces a Bayesian structure learning algorithm to learn the functional connectivity of EEG in sensor space.
The intrasubject (subject-specific) classification performed on 154 subjects for six different verbal working memory loads produced the highest classification accuracy of 96%.
The results also show that the alpha and theta bands have better classification accuracy than the beta band.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Brain responses related to working memory originate from distinct brain areas and oscillate at different frequencies. EEG signals with high temporal correlation can effectively capture these responses. Therefore, estimating the functional connectivity of EEG for working memory protocols in different frequency bands plays a significant role in analyzing the brain dynamics with increasing memory and cognitive loads, which remains largely unexplored. The present study introduces a Bayesian structure learning algorithm to learn the functional connectivity of EEG in sensor space. Next, the functional connectivity graphs are taken as input to the graph convolutional network to classify the working memory loads. The intrasubject (subject-specific) classification performed on 154 subjects for six different verbal working memory loads produced the highest classification accuracy of 96% and average classification accuracy of 89%, outperforming state-of-the-art classification models proposed in the literature. Furthermore, the proposed Bayesian structure learning algorithm is compared with state-of-the-art functional connectivity estimation methods through intersubject and intrasubject statistical analysis of variance. The results also show that the alpha and theta bands have better classification accuracy than the beta band.
Related papers
- Spatial-Temporal DAG Convolutional Networks for End-to-End Joint
Effective Connectivity Learning and Resting-State fMRI Classification [42.82118108887965]
Building comprehensive brain connectomes has proved to be fundamental importance in resting-state fMRI (rs-fMRI) analysis.
We model the brain network as a directed acyclic graph (DAG) to discover direct causal connections between brain regions.
We propose Spatial-Temporal DAG Convolutional Network (ST-DAGCN) to jointly infer effective connectivity and classify rs-fMRI time series.
arXiv Detail & Related papers (2023-12-16T04:31:51Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
We propose DynDepNet, a novel method for learning the optimal time-varying dependency structure of fMRI data induced by downstream prediction tasks.
Experiments on real-world fMRI datasets, for the task of sex classification, demonstrate that DynDepNet achieves state-of-the-art results.
arXiv Detail & Related papers (2022-09-27T16:32:11Z) - Hierarchical Graph Convolutional Network Built by Multiscale Atlases for
Brain Disorder Diagnosis Using Functional Connectivity [48.75665245214903]
We propose a novel framework to perform multiscale FCN analysis for brain disorder diagnosis.
We first use a set of well-defined multiscale atlases to compute multiscale FCNs.
Then, we utilize biologically meaningful brain hierarchical relationships among the regions in multiscale atlases to perform nodal pooling.
arXiv Detail & Related papers (2022-09-22T04:17:57Z) - A deep learning model for data-driven discovery of functional
connectivity [0.0]
We propose a deep learning architecture BrainGNN that learns the connectivity structure as part of learning to classify subjects.
We demonstrate the model's state-of-the-art classification performance on a schizophrenia fMRI dataset.
arXiv Detail & Related papers (2021-12-07T21:57:32Z) - Functional connectivity ensemble method to enhance BCI performance
(FUCONE) [3.510884437562011]
We propose a novel framework that combines functional connectivity estimators and covariance-based pipelines to classify mental states.
A thorough assessment of the functional connectivity estimators is provided and the best performing pipeline, called FUCONE, is evaluated on different conditions.
arXiv Detail & Related papers (2021-11-04T19:40:08Z) - EEGminer: Discovering Interpretable Features of Brain Activity with
Learnable Filters [72.19032452642728]
We propose a novel differentiable EEG decoding pipeline consisting of learnable filters and a pre-determined feature extraction module.
We demonstrate the utility of our model towards emotion recognition from EEG signals on the SEED dataset and on a new EEG dataset of unprecedented size.
The discovered features align with previous neuroscience studies and offer new insights, such as marked differences in the functional connectivity profile between left and right temporal areas during music listening.
arXiv Detail & Related papers (2021-10-19T14:22:04Z) - Improving Phenotype Prediction using Long-Range Spatio-Temporal Dynamics
of Functional Connectivity [9.015698823470899]
We present an approach to model functional brain connectivity across space and time.
We use the Human Connectome Project dataset on sex classification and fluid intelligence prediction.
Results show a prediction accuracy of 94.4% for sex, and an improvement of correlation with fluid intelligence of 0.325 vs 0.144, relative to a baseline model that encodes space and time separately.
arXiv Detail & Related papers (2021-09-07T14:23:34Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Classification of Upper Arm Movements from EEG signals using Machine
Learning with ICA Analysis [0.0]
This paper proposes a unique algorithm for classifying left/right-hand movements by utilizing Multi-layer Perceptron Neural Network.
The intervention of unwanted signals contaminates the EEG signals which influence the performance of the algorithm.
arXiv Detail & Related papers (2021-07-18T18:56:28Z) - Emotional EEG Classification using Connectivity Features and
Convolutional Neural Networks [81.74442855155843]
We introduce a new classification system that utilizes brain connectivity with a CNN and validate its effectiveness via the emotional video classification.
The level of concentration of the brain connectivity related to the emotional property of the target video is correlated with classification performance.
arXiv Detail & Related papers (2021-01-18T13:28:08Z) - Deep Representational Similarity Learning for analyzing neural
signatures in task-based fMRI dataset [81.02949933048332]
This paper develops Deep Representational Similarity Learning (DRSL), a deep extension of Representational Similarity Analysis (RSA)
DRSL is appropriate for analyzing similarities between various cognitive tasks in fMRI datasets with a large number of subjects.
arXiv Detail & Related papers (2020-09-28T18:30:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.