論文の概要: Inexact subgradient methods for semialgebraic functions
- arxiv url: http://arxiv.org/abs/2404.19517v2
- Date: Tue, 13 May 2025 13:35:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-14 20:57:54.126657
- Title: Inexact subgradient methods for semialgebraic functions
- Title(参考訳): 半代数関数の不正確な下勾配法
- Authors: Jérôme Bolte, Tam Le, Éric Moulines, Edouard Pauwels,
- Abstract要約: 機械学習における近似勾配の広範囲な適用を動機として, 永続的な誤差を受ける部分エクサクティヴな加算法について検討する。
我々の分析は、消滅と定常的なステップサイズ体制の両方に対処する。
- 参考スコア(独自算出の注目度): 18.293072574300798
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivated by the extensive application of approximate gradients in machine learning and optimization, we investigate inexact subgradient methods subject to persistent additive errors. Within a nonconvex semialgebraic framework, assuming boundedness or coercivity, we establish that the method yields iterates that eventually fluctuate near the critical set at a proximity characterized by an $O(\epsilon^\rho)$ distance, where $\epsilon$ denotes the magnitude of subgradient evaluation errors, and $\rho$ encapsulates geometric characteristics of the underlying problem. Our analysis comprehensively addresses both vanishing and constant step-size regimes. Notably, the latter regime inherently enlarges the fluctuation region, yet this enlargement remains on the order of $\epsilon^\rho$. In the convex scenario, employing a universal error bound applicable to coercive semialgebraic functions, we derive novel complexity results concerning averaged iterates. Additionally, our study produces auxiliary results of independent interest, including descent-type lemmas for nonsmooth nonconvex functions and an invariance principle governing the behavior of algorithmic sequences under small-step limits.
- Abstract(参考訳): 機械学習と最適化における近似勾配の広範な適用を動機とし、永続的な加法誤差を受ける不正確な下位段階法について検討する。
非凸半代数的枠組みの中では、有界性や保力性を仮定すると、この手法は最終的に臨界集合の近くで変動する反復を$O(\epsilon^\rho)$ distanceで表し、$\epsilon$は下次評価誤差の大きさを表し、$\rho$は根底問題の幾何学的特徴をカプセル化する。
我々の分析は、消滅と定常的なステップサイズ体制の両方に包括的に対処する。
特に、後者の体制は本質的に変動領域を拡大するが、この拡大は$\epsilon^\rho$の順序に留まる。
凸のシナリオでは、強制半代数関数に適用可能な普遍誤差を用いることで、平均的反復に関する新しい複雑さの結果を導出する。
さらに,非滑らかな非凸関数に対する降下型補題や,小段階の制限下でのアルゴリズム列の振舞いを規定する不変原理など,独立した関心の補助的な結果が得られた。
関連論文リスト
- Quantitative Error Bounds for Scaling Limits of Stochastic Iterative Algorithms [10.022615790746466]
アルゴリズムのサンプルパスとOrnstein-Uhlenbeck近似の非漸近関数近似誤差を導出する。
我々は、L'evy-Prokhorov と有界ワッサーシュタイン距離という2つの一般的な測度で誤差境界を構築するために、主要な結果を使用する。
論文 参考訳(メタデータ) (2025-01-21T15:29:11Z) - Stochastic First-Order Methods with Non-smooth and Non-Euclidean Proximal Terms for Nonconvex High-Dimensional Stochastic Optimization [2.0657831823662574]
非問題が非問題である場合、一階法のサンプルは問題次元に線形に依存することがあるが、望ましくない問題に対するものである。
我々のアルゴリズムは距離を使って複雑さを見積もることができる。
MathO (log d) / EuM4。
DISFOM は $mathO (log d) / EuM4 を用いて分散を鋭くすることができることを示す。
論文 参考訳(メタデータ) (2024-06-27T18:38:42Z) - A Unified Analysis on the Subgradient Upper Bounds for the Subgradient Methods Minimizing Composite Nonconvex, Nonsmooth and Non-Lipschitz Functions [7.972544890243396]
本稿では, 近位降下法(Prox-SubGrad) 型アプローチの統一解析について述べる。
我々は, 誤差有界条件, 対象の下位次数の成長条件, および主次次次次次次数反復の挙動を, 極めて広い目的関数のクラスに関連付けることができる。
論文 参考訳(メタデータ) (2023-08-30T23:34:11Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
本研究では, 多様体の曲率に依存しないステップサイズが, 曲率非依存かつ直線的最終点収束率を達成することを示す。
我々の知る限りでは、曲率非依存率や/または最終点収束の可能性はこれまでに検討されていない。
論文 参考訳(メタデータ) (2023-06-29T01:20:44Z) - Decentralized Weakly Convex Optimization Over the Stiefel Manifold [28.427697270742947]
我々は分散環境でスティーフェル多様体に焦点をあて、$nMn log-1)$のエージェントの連結ネットワークをテストする。
そこで本研究では,nMn log-1 以下の自然ステーションを強制的に強制する分散下位段階法 (DRSM)$ という手法を提案する。
論文 参考訳(メタデータ) (2023-03-31T02:56:23Z) - High-Probability Bounds for Stochastic Optimization and Variational
Inequalities: the Case of Unbounded Variance [59.211456992422136]
制約の少ない仮定の下で高確率収束結果のアルゴリズムを提案する。
これらの結果は、標準機能クラスに適合しない問題を最適化するために検討された手法の使用を正当化する。
論文 参考訳(メタデータ) (2023-02-02T10:37:23Z) - Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation
Constrained Optimization [88.0031283949404]
多くの実世界の問題は複雑な非機能的制約を持ち、多くのデータポイントを使用する。
提案手法は,従来最もよく知られた結果で既存手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-12-19T14:48:54Z) - Randomized Coordinate Subgradient Method for Nonsmooth Composite
Optimization [11.017632675093628]
非滑らかな問題に対処するコーディネート型劣階法は、リプシッツ型仮定の性質のセットのため、比較的過小評価されている。
論文 参考訳(メタデータ) (2022-06-30T02:17:11Z) - Posterior and Computational Uncertainty in Gaussian Processes [52.26904059556759]
ガウスのプロセスはデータセットのサイズとともに違法にスケールする。
多くの近似法が開発されており、必然的に近似誤差を導入している。
この余分な不確実性の原因は、計算が限られているため、近似後部を使用すると完全に無視される。
本研究では,観測された有限個のデータと有限個の計算量の両方から生じる組合せ不確実性を一貫した推定を行う手法の開発を行う。
論文 参考訳(メタデータ) (2022-05-30T22:16:25Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sample (AIS) と関連するアルゴリズムは、限界推定のための非常に効果的なツールである。
差別性は、目的として限界確率を最適化する可能性を認めるため、望ましい性質である。
我々はメトロポリス・ハスティングスのステップを放棄して微分可能アルゴリズムを提案し、ミニバッチ計算をさらに解き放つ。
論文 参考訳(メタデータ) (2021-07-21T17:10:14Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
ヒルベルト空間の既知の低次元部分空間を探索することにより、確率観測の集合を用いて近似解を計算する手法を検討する。
本稿では,線形関数近似を用いた政策評価問題に対する時間差分学習手法の誤差を正確に評価する方法について述べる。
論文 参考訳(メタデータ) (2020-12-09T20:19:32Z) - Stochastic Zeroth-order Riemannian Derivative Estimation and
Optimization [15.78743548731191]
多様体非線型性の非線型性の難しさを克服するために、ガウス滑らか化関数のオラクル版を提案する。
ニューラルネットワークに対するロボティクスとブラックボックス攻撃に対するブラックボックス剛性制御における,結果によるアルゴリズムの適用性と実世界の応用を実証する。
論文 参考訳(メタデータ) (2020-03-25T06:58:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。