Artificial Intelligence in Bone Metastasis Analysis: Current Advancements, Opportunities and Challenges
- URL: http://arxiv.org/abs/2404.19598v1
- Date: Tue, 30 Apr 2024 14:49:03 GMT
- Title: Artificial Intelligence in Bone Metastasis Analysis: Current Advancements, Opportunities and Challenges
- Authors: Marwa Afnouch, Fares Bougourzi, Olfa Gaddour, Fadi Dornaika, Abdelmalik Taleb-Ahmed,
- Abstract summary: This review highlights the current state-of-the-art and advancements for Bone Metastases analysis using artificial intelligence.
ML technologies can achieve promising performance for BM analysis and have significant potential to improve clinician efficiency and cope with time and cost limitations.
- Score: 15.765725731972983
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In recent years, Artificial Intelligence (AI) has been widely used in medicine, particularly in the analysis of medical imaging, which has been driven by advances in computer vision and deep learning methods. This is particularly important in overcoming the challenges posed by diseases such as Bone Metastases (BM), a common and complex malignancy of the bones. Indeed, there have been an increasing interest in developing Machine Learning (ML) techniques into oncologic imaging for BM analysis. In order to provide a comprehensive overview of the current state-of-the-art and advancements for BM analysis using artificial intelligence, this review is conducted with the accordance with PRISMA guidelines. Firstly, this review highlights the clinical and oncologic perspectives of BM and the used medical imaging modalities, with discussing their advantages and limitations. Then the review focuses on modern approaches with considering the main BM analysis tasks, which includes: classification, detection and segmentation. The results analysis show that ML technologies can achieve promising performance for BM analysis and have significant potential to improve clinician efficiency and cope with time and cost limitations. Furthermore, there are requirements for further research to validate the clinical performance of ML tools and facilitate their integration into routine clinical practice.
Related papers
- Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.
Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - Large Language Models in Drug Discovery and Development: From Disease Mechanisms to Clinical Trials [49.19897427783105]
The integration of Large Language Models (LLMs) into the drug discovery and development field marks a significant paradigm shift.
We investigate how these advanced computational models can uncover target-disease linkage, interpret complex biomedical data, enhance drug molecule design, predict drug efficacy and safety profiles, and facilitate clinical trial processes.
arXiv Detail & Related papers (2024-09-06T02:03:38Z) - Breast Cancer Diagnosis: A Comprehensive Exploration of Explainable Artificial Intelligence (XAI) Techniques [38.321248253111776]
Article explores the application of Explainable Artificial Intelligence (XAI) techniques in the detection and diagnosis of breast cancer.
Aims to highlight the potential of XAI in bridging the gap between complex AI models and practical healthcare applications.
arXiv Detail & Related papers (2024-06-01T18:50:03Z) - Reviewing AI's Role in Non-Muscle-Invasive Bladder Cancer Recurrence Prediction [0.4369058206183195]
Non-muscle-invasive Bladder Cancer (NMIBC) imposes a significant human burden and is one of the costliest cancers to manage.
Current tools for predicting NMIBC recurrence rely on scoring systems that often overestimate risk and have poor accuracy.
Machine learning (ML)-based techniques have emerged as a promising approach for predicting NMIBC recurrence by leveraging molecular and clinical data.
arXiv Detail & Related papers (2024-03-15T17:03:45Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - The Significance of Machine Learning in Clinical Disease Diagnosis: A
Review [0.0]
This research investigates the capacity of machine learning algorithms to improve the transmission of heart rate data in time series healthcare metrics.
The factors under consideration include the algorithm utilized, the types of diseases targeted, the data types employed, the applications, and the evaluation metrics.
arXiv Detail & Related papers (2023-10-25T20:28:22Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Artificial Intelligence for Dementia Research Methods Optimization [0.49050354212898845]
We present an overview of machine learning algorithms most frequently used in dementia research.
We discuss issues of replicability and interpretability and how these impact the clinical applicability of dementia research.
We give examples of how state-of-the-art methods, such as transfer learning, multi-task learning, and reinforcement learning, may be applied to overcome these issues.
arXiv Detail & Related papers (2023-03-02T08:50:25Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
Machine learning holds great promise for improving healthcare, but it is critical to ensure that its use will not propagate or amplify health disparities.
One potential driver of algorithmic unfairness, shortcut learning, arises when ML models base predictions on improper correlations in the training data.
Using multi-task learning, we propose the first method to assess and mitigate shortcut learning as a part of the fairness assessment of clinical ML systems.
arXiv Detail & Related papers (2022-07-21T09:35:38Z) - Computer-Assisted Analysis of Biomedical Images [1.0116577992023341]
This thesis aims at proposing novel and advanced computer-assisted methods for biomedical image analysis.
The ultimate goal of these research studies is to gain clinically and biologically useful insights that can guide differential diagnosis and therapies.
arXiv Detail & Related papers (2021-06-04T21:59:48Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.