Leveraging Pre-trained CNNs for Efficient Feature Extraction in Rice Leaf Disease Classification
- URL: http://arxiv.org/abs/2405.00025v1
- Date: Mon, 26 Feb 2024 07:19:48 GMT
- Title: Leveraging Pre-trained CNNs for Efficient Feature Extraction in Rice Leaf Disease Classification
- Authors: Md. Shohanur Islam Sobuj, Md. Imran Hossen, Md. Foysal Mahmud, Mahbub Ul Islam Khan,
- Abstract summary: We rigorously evaluate the impact of integrating feature extraction methodologies within pre-trained convolutional neural networks (CNNs)
Histogram of Oriented Gradients (HOG) yielded substantial improvements across architectures, notably propelling the accuracy of EfficientNet-B7 from 92% to an impressive 97%.
Grad-CAM unveiled that HOG integration resulted in heightened attention to disease-specific features, corroborating the performance enhancements observed.
- Score: 1.4874449172133892
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Rice disease classification is a critical task in agricultural research, and in this study, we rigorously evaluate the impact of integrating feature extraction methodologies within pre-trained convolutional neural networks (CNNs). Initial investigations into baseline models, devoid of feature extraction, revealed commendable performance with ResNet-50 and ResNet-101 achieving accuracies of 91% and 92%, respectively. Subsequent integration of Histogram of Oriented Gradients (HOG) yielded substantial improvements across architectures, notably propelling the accuracy of EfficientNet-B7 from 92\% to an impressive 97%. Conversely, the application of Local Binary Patterns (LBP) demonstrated more conservative performance enhancements. Moreover, employing Gradient-weighted Class Activation Mapping (Grad-CAM) unveiled that HOG integration resulted in heightened attention to disease-specific features, corroborating the performance enhancements observed. Visual representations further validated HOG's notable influence, showcasing a discernible surge in accuracy across epochs due to focused attention on disease-affected regions. These results underscore the pivotal role of feature extraction, particularly HOG, in refining representations and bolstering classification accuracy. The study's significant highlight was the achievement of 97% accuracy with EfficientNet-B7 employing HOG and Grad-CAM, a noteworthy advancement in optimizing pre-trained CNN-based rice disease identification systems. The findings advocate for the strategic integration of advanced feature extraction techniques with cutting-edge pre-trained CNN architectures, presenting a promising avenue for substantially augmenting the precision and effectiveness of image-based disease classification systems in agricultural contexts.
Related papers
- EfficientNet with Hybrid Attention Mechanisms for Enhanced Breast Histopathology Classification: A Comprehensive Approach [0.0]
This paper introduces a novel approach integrating Hybrid EfficientNet models with advanced attention mechanisms to enhance feature extraction and focus on critical image regions.
We evaluate the performance of our models across multiple magnification scales using publicly available hispathology datasets.
The results are validated using metrics such as accuracy, F1-score, precision, and recall, demonstrating the clinical potential of our model in improving diagnostic accuracy.
arXiv Detail & Related papers (2024-10-29T17:56:05Z) - Dumpling GNN: Hybrid GNN Enables Better ADC Payload Activity Prediction Based on Chemical Structure [53.76752789814785]
DumplingGNN is a hybrid Graph Neural Network architecture specifically designed for predicting ADC payload activity based on chemical structure.
We evaluate it on a comprehensive ADC payload dataset focusing on DNA Topoisomerase I inhibitors.
It demonstrates exceptional accuracy (91.48%), sensitivity (95.08%), and specificity (97.54%) on our specialized ADC payload dataset.
arXiv Detail & Related papers (2024-09-23T17:11:04Z) - Comparative Analysis of Transfer Learning Models for Breast Cancer Classification [10.677937909900486]
This study investigates the efficiency of deep learning models in distinguishing between Invasive Ductal Carcinoma (IDC) and non-IDC in histopathology slides.
We conducted a comparison examination of eight sophisticated models: ResNet-50, DenseNet-121, ResNeXt-50, Vision Transformer (ViT), GoogLeNet (Inception v3), EfficientNet, MobileNet, and SqueezeNet.
arXiv Detail & Related papers (2024-08-29T18:49:32Z) - Class-specific Data Augmentation for Plant Stress Classification [8.433217399526521]
We propose an approach for automated class-specific data augmentation using a genetic algorithm.
We demonstrate the utility of our approach on soybean [Glycine max (L.) Merr] stress classification where symptoms are observed on leaves.
Our approach yields substantial performance, achieving a mean-per-class accuracy of 97.61% and an overall accuracy of 98% on the soybean leaf stress dataset.
arXiv Detail & Related papers (2024-06-18T22:01:25Z) - Leveraging Spatial and Semantic Feature Extraction for Skin Cancer Diagnosis with Capsule Networks and Graph Neural Networks [0.0]
This study introduces an innovative approach by integrating Graph Neural Networks (GNNs) with Capsule Networks to enhance classification performance.
Our research focuses on evaluating and enhancing the Tiny Pyramid Vision GNN (Tiny Pyramid ViG) architecture by incorporating it with a Capsule Network.
After 75 epochs of training, our model achieved a significant accuracy improvement, reaching 89.23% and 95.52%, surpassing established benchmarks.
arXiv Detail & Related papers (2024-03-18T17:47:39Z) - Does Synthetic Data Generation of LLMs Help Clinical Text Mining? [51.205078179427645]
We investigate the potential of OpenAI's ChatGPT to aid in clinical text mining.
We propose a new training paradigm that involves generating a vast quantity of high-quality synthetic data.
Our method has resulted in significant improvements in the performance of downstream tasks.
arXiv Detail & Related papers (2023-03-08T03:56:31Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - Rice Diseases Detection and Classification Using Attention Based Neural
Network and Bayesian Optimization [10.07637392589791]
Rice diseases frequently result in 20 to 40 % corp production loss in yield and is highly related to the global economy.
To achieve AI assisted rapid and accurate disease detection, we proposed the ADSNN-BO model based on MobileNet structure and augmented attention mechanism.
Our mobile compatible ADSNN-BO model achieves a test accuracy of 94.65%, which outperforms all of the state-of-the-art models tested.
arXiv Detail & Related papers (2022-01-03T22:26:00Z) - To be Critical: Self-Calibrated Weakly Supervised Learning for Salient
Object Detection [95.21700830273221]
Weakly-supervised salient object detection (WSOD) aims to develop saliency models using image-level annotations.
We propose a self-calibrated training strategy by explicitly establishing a mutual calibration loop between pseudo labels and network predictions.
We prove that even a much smaller dataset with well-matched annotations can facilitate models to achieve better performance as well as generalizability.
arXiv Detail & Related papers (2021-09-04T02:45:22Z) - How Knowledge Graph and Attention Help? A Quantitative Analysis into
Bag-level Relation Extraction [66.09605613944201]
We quantitatively evaluate the effect of attention and Knowledge Graph on bag-level relation extraction (RE)
We find that (1) higher attention accuracy may lead to worse performance as it may harm the model's ability to extract entity mention features; (2) the performance of attention is largely influenced by various noise distribution patterns; and (3) KG-enhanced attention indeed improves RE performance, while not through enhanced attention but by incorporating entity prior.
arXiv Detail & Related papers (2021-07-26T09:38:28Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.