Rice Diseases Detection and Classification Using Attention Based Neural
Network and Bayesian Optimization
- URL: http://arxiv.org/abs/2201.00893v1
- Date: Mon, 3 Jan 2022 22:26:00 GMT
- Title: Rice Diseases Detection and Classification Using Attention Based Neural
Network and Bayesian Optimization
- Authors: Yibin Wang, Haifeng Wang, Zhaohua Peng
- Abstract summary: Rice diseases frequently result in 20 to 40 % corp production loss in yield and is highly related to the global economy.
To achieve AI assisted rapid and accurate disease detection, we proposed the ADSNN-BO model based on MobileNet structure and augmented attention mechanism.
Our mobile compatible ADSNN-BO model achieves a test accuracy of 94.65%, which outperforms all of the state-of-the-art models tested.
- Score: 10.07637392589791
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this research, an attention-based depthwise separable neural network with
Bayesian optimization (ADSNN-BO) is proposed to detect and classify rice
disease from rice leaf images. Rice diseases frequently result in 20 to 40 \%
corp production loss in yield and is highly related to the global economy.
Rapid disease identification is critical to plan treatment promptly and reduce
the corp losses. Rice disease diagnosis is still mainly performed manually. To
achieve AI assisted rapid and accurate disease detection, we proposed the
ADSNN-BO model based on MobileNet structure and augmented attention mechanism.
Moreover, Bayesian optimization method is applied to tune hyper-parameters of
the model. Cross-validated classification experiments are conducted based on a
public rice disease dataset with four categories in total. The experimental
results demonstrate that our mobile compatible ADSNN-BO model achieves a test
accuracy of 94.65\%, which outperforms all of the state-of-the-art models
tested. To check the interpretability of our proposed model, feature analysis
including activation map and filters visualization approach are also conducted.
Results show that our proposed attention-based mechanism can more effectively
guide the ADSNN-BO model to learn informative features. The outcome of this
research will promote the implementation of artificial intelligence for fast
plant disease diagnosis and control in the agricultural field.
Related papers
- EfficientNet with Hybrid Attention Mechanisms for Enhanced Breast Histopathology Classification: A Comprehensive Approach [0.0]
This paper introduces a novel approach integrating Hybrid EfficientNet models with advanced attention mechanisms to enhance feature extraction and focus on critical image regions.
We evaluate the performance of our models across multiple magnification scales using publicly available hispathology datasets.
The results are validated using metrics such as accuracy, F1-score, precision, and recall, demonstrating the clinical potential of our model in improving diagnostic accuracy.
arXiv Detail & Related papers (2024-10-29T17:56:05Z) - CapsuleNet: A Deep Learning Model To Classify GI Diseases Using EfficientNet-b7 [1.2499537119440245]
We present CapsuleNet, a deep learning model developed for the Capsule Vision 2024 Challenge, aimed at classifying 10 distinct GI abnormalities.
Our model leverages a pretrained EfficientNet-b7 backbone, tuned with additional layers for classification and optimized with PReLU activation functions.
Our findings suggest that CNN-based models like CapsuleNet can provide an efficient solution for GI tract disease classification, particularly when inference time is a critical factor.
arXiv Detail & Related papers (2024-10-24T20:43:47Z) - Enhancing Eye Disease Diagnosis with Deep Learning and Synthetic Data Augmentation [0.0]
In this paper, an ensemble learning technique is proposed for early detection and management of diabetic retinopathy.
The proposed model is tested on the APTOS dataset and it is showing supremacy on the validation accuracy ($99%)$ in comparison to the previous models.
arXiv Detail & Related papers (2024-07-25T04:09:17Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
Brain imaging-to-graph generation (BIGG) framework is proposed to map functional magnetic resonance imaging (fMRI) into effective connectivity for mild cognitive impairment analysis.
The hierarchical transformers in the generator are designed to estimate the noise at multiple scales.
Evaluations of the ADNI dataset demonstrate the feasibility and efficacy of the proposed model.
arXiv Detail & Related papers (2023-05-18T06:54:56Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - COVID-19 Electrocardiograms Classification using CNN Models [1.1172382217477126]
A novel approach is proposed to automatically diagnose the COVID-19 by the utilization of Electrocardiogram (ECG) data with the integration of deep learning algorithms.
CNN models have been utilized in this proposed framework, including VGG16, VGG19, InceptionResnetv2, InceptionV3, Resnet50, and Densenet201.
Our results show a relatively low accuracy in the rest of the models compared to the VGG16 model, which is due to the small size of the utilized dataset.
arXiv Detail & Related papers (2021-12-15T08:06:45Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.