論文の概要: Graph Neural Network Approach to Semantic Type Detection in Tables
- arxiv url: http://arxiv.org/abs/2405.00123v1
- Date: Tue, 30 Apr 2024 18:17:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 17:26:02.470107
- Title: Graph Neural Network Approach to Semantic Type Detection in Tables
- Title(参考訳): グラフニューラルネットワークによる表中の意味型検出
- Authors: Ehsan Hoseinzade, Ke Wang,
- Abstract要約: 本研究では,関係表中の意味列型を検出することの課題に対処する。
本稿では,グラフニューラルネットワーク(GNN)を用いてテーブル内依存関係をモデル化する手法を提案する。
提案手法は,既存の最先端アルゴリズムよりも優れているだけでなく,意味型検出のための様々なGNN型の有用性と機能に関する新たな知見を提供する。
- 参考スコア(独自算出の注目度): 3.929053351442136
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study addresses the challenge of detecting semantic column types in relational tables, a key task in many real-world applications. While language models like BERT have improved prediction accuracy, their token input constraints limit the simultaneous processing of intra-table and inter-table information. We propose a novel approach using Graph Neural Networks (GNNs) to model intra-table dependencies, allowing language models to focus on inter-table information. Our proposed method not only outperforms existing state-of-the-art algorithms but also offers novel insights into the utility and functionality of various GNN types for semantic type detection. The code is available at https://github.com/hoseinzadeehsan/GAIT
- Abstract(参考訳): 本研究では,多くの実世界のアプリケーションにおいて重要な課題であるリレーショナルテーブルにおける意味列型検出の課題に対処する。
BERTのような言語モデルでは予測精度が向上しているが、トークン入力制約はテーブル内およびテーブル間情報の同時処理を制限する。
本稿では,グラフニューラルネットワーク(GNN)を用いてテーブル内依存関係をモデル化し,テーブル間情報に注目する言語モデルを提案する。
提案手法は,既存の最先端アルゴリズムよりも優れているだけでなく,意味型検出のための様々なGNN型の有用性と機能に関する新たな知見を提供する。
コードはhttps://github.com/hoseinzadeehsan/GAITで公開されている。
関連論文リスト
- Supervised Gradual Machine Learning for Aspect Category Detection [0.9857683394266679]
アスペクトカテゴリー検出(ACD)は、あるレビュー文の中で暗黙的かつ明示的な側面を識別することを目的としている。
本稿では,Deep Neural Networks (DNN) と Gradual Machine Learning (GML) を教師付き環境で組み合わせることで,ACDタスクに取り組む新しい手法を提案する。
論文 参考訳(メタデータ) (2024-04-08T07:21:46Z) - Making Pre-trained Language Models Great on Tabular Prediction [50.70574370855663]
ディープニューラルネットワーク(DNN)の転送性は、画像および言語処理において著しく進歩している。
本稿では,表型データ予測のための訓練済みLMであるTP-BERTaを提案する。
新たな相対等級トークン化では、スカラー数値の特徴値を細分化した高次元トークンに変換し、特徴値と対応する特徴名を統合する。
論文 参考訳(メタデータ) (2024-03-04T08:38:56Z) - AdaTyper: Adaptive Semantic Column Type Detection [4.062265896931587]
私たちはAdaTyperを提案し、最も重要なデプロイメント課題の1つに対処します。
AdaTyperは弱いスーパービジョンを使用して、ハイブリッド型予測器を新しいセマンティックタイプに適応し、推論時にデータ分散をシフトする。
クラウドソーシングによる実世界のデータベーステーブル上でのAdaTyperの適応性能の評価を行った。
論文 参考訳(メタデータ) (2023-11-23T04:42:27Z) - Efficient and effective training of language and graph neural network
models [36.00479096375565]
我々は,大規模言語モデルとグラフニューラルネットワークを協調的に学習する,効率的な言語モデルGNN(LM-GNN)を提案する。
本フレームワークの有効性は、BERTモデルの段階的微調整をまず異種グラフ情報に適用し、次にGNNモデルを用いて達成する。
我々は,LM-GNNフレームワークを異なるデータセットの性能で評価し,提案手法の有効性を示す。
論文 参考訳(メタデータ) (2022-06-22T00:23:37Z) - A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features [61.92791503017341]
数値ノード特徴とグラフ構造を入力とするグラフニューラルネットワーク(GNN)は,グラフデータを用いた各種教師付き学習タスクにおいて,優れた性能を示した。
IID(non-graph)データをGNNに簡単に組み込むことはできない。
本稿では、グラフ認識の伝播をIDデータに意図した任意のモデルで融合するロバストな積み重ねフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-16T22:46:33Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - TabGNN: Multiplex Graph Neural Network for Tabular Data Prediction [43.35301059378836]
最近普及しているグラフニューラルネットワーク(GNN)に基づく新しいフレームワークTabGNNを提案する。
具体的には,まず,多面的サンプル関係をモデル化するための多重グラフを構築し,次に,各サンプルに対する拡張表現を学習するための多重グラフニューラルネットワークを設計する。
分類と回帰を含む11のTDPデータセットに対する実験は、TabGNNが一貫して性能を向上できることを示している。
論文 参考訳(メタデータ) (2021-08-20T11:51:32Z) - Fast Text-Only Domain Adaptation of RNN-Transducer Prediction Network [0.0]
RNNトランスデューサモデルは,少量のテキストデータのみを用いて,新しいドメインに効果的に適応できることを示した。
本稿では,複数のASR評価タスクを用いて,目標タスクWERにおける相対的な10〜45%の利得が得られる方法を示す。
論文 参考訳(メタデータ) (2021-04-22T15:21:41Z) - InsertGNN: Can Graph Neural Networks Outperform Humans in TOEFL Sentence
Insertion Problem? [66.70154236519186]
センテンス挿入は繊細だが基本的なNLP問題である。
文順序付け、テキストコヒーレンス、質問応答(QA)の現在のアプローチは、その解決には適さない。
本稿では,この問題をグラフとして表現し,グラフニューラルネットワーク(GNN)を用いて文間の関係を学習するモデルであるInsertGNNを提案する。
論文 参考訳(メタデータ) (2021-03-28T06:50:31Z) - Overcoming Catastrophic Forgetting in Graph Neural Networks [50.900153089330175]
破滅的な忘れは、ニューラルネットワークが新しいタスクを学ぶ前に学んだ知識を「忘れる」傾向を指します。
本稿では,この問題を克服し,グラフニューラルネットワーク(GNN)における継続学習を強化するための新しいスキームを提案する。
私たちのアプローチの中心には、トポロジ認識重量保存(TWP)と呼ばれる汎用モジュールがあります。
論文 参考訳(メタデータ) (2020-12-10T22:30:25Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。