論文の概要: Grounding Realizable Entities
- arxiv url: http://arxiv.org/abs/2405.00197v1
- Date: Tue, 30 Apr 2024 21:01:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 17:06:33.145334
- Title: Grounding Realizable Entities
- Title(参考訳): Grounding Realizable Entities
- Authors: Michael Rabenberg, Carter Benson, Federico Donato, Yongqun He, Anthony Huffman, Shane Babcock, John Beverley,
- Abstract要約: 本稿では, 質と配置, 配置と役割の接地関係の定義を提案する。
ホスト-パロゲン相互作用の微妙な側面を表現して提案する。
- 参考スコア(独自算出の注目度): 0.3069289672731669
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ontological representations of qualities, dispositions, and roles have been refined over the past decade, clarifying subtle distinctions in life science research. After articulating a widely-used characterization of these entities within the context of Basic Formal Ontology (BFO), we identify gaps in this treatment and motivate the need for supplementing the BFO characterization. By way of supplement, we propose definitions for grounding relations holding between qualities and dispositions, and dispositions and roles, illustrating our proposal by representing subtle aspects of host-pathogen interactions.
- Abstract(参考訳): 過去10年間、質、配置、役割のオントロジー的表現が洗練され、生命科学研究における微妙な区別が明確化されてきた。
基本形式オントロジー (BFO) の文脈において, それらの実体の広く用いられている特徴を定式化した上で, この治療におけるギャップを特定し, BFO の特徴を補う必要性を動機づける。
本研究では, 宿主-病原体相互作用の微妙な側面を表現して, 品質と配置, 配置と役割の接地関係を規定する定義を提案する。
関連論文リスト
- Heterogeneous Graph Neural Networks with Post-hoc Explanations for Multi-modal and Explainable Land Use Inference [11.753345219488745]
本稿では、異種グラフニューラルネットワーク(HGN)と説明可能なAI技術を組み合わせた土地利用推定のための説明可能なフレームワークを提案する。
実験により、提案したHGNは6つの土地利用指標すべてに対して、ベースライングラフニューラルネットワークを著しく上回っていることが示された。
これらの分析は,提案したHGNが都市計画や政策立案において,都市利害関係者を適切に支援できることを示した。
論文 参考訳(メタデータ) (2024-06-19T17:39:10Z) - Layer-Wise Analysis of Self-Supervised Acoustic Word Embeddings: A Study
on Speech Emotion Recognition [54.952250732643115]
連続表現から派生した長さの固定長特徴である音響単語埋め込み(AWE)について検討し,その利点について検討した。
AWEは以前、音響的識別可能性の把握に有用であることを示した。
以上の結果から,AWEが伝達する音響的文脈が明らかになり,高い競争力を持つ音声認識精度が示された。
論文 参考訳(メタデータ) (2024-02-04T21:24:54Z) - Aspect-oriented Opinion Alignment Network for Aspect-Based Sentiment
Classification [14.212306015270208]
本稿では、意見語とそれに対応する側面の文脈的関連を捉えるために、アスペクト指向オピニオンアライメントネットワーク(AOAN)を提案する。
さらに,対象の側面に関連性のある意見情報を一致させる多視点的注意機構を設計する。
提案モデルでは,3つのベンチマークデータセットに対して最先端の結果が得られた。
論文 参考訳(メタデータ) (2023-08-22T13:55:36Z) - DARE: Towards Robust Text Explanations in Biomedical and Healthcare
Applications [54.93807822347193]
帰属ロバスト性評価手法を与えられたドメインに適応させ、ドメイン固有の妥当性を考慮する方法を示す。
次に,DAREが特徴とする脆さを軽減するために,対人訓練とFAR訓練の2つの方法を提案する。
最後に,確立した3つのバイオメディカル・ベンチマークを用いて実験を行い,本手法を実証的に検証した。
論文 参考訳(メタデータ) (2023-07-05T08:11:40Z) - Interactive Natural Language Processing [67.87925315773924]
対話型自然言語処理(iNLP)は,NLP分野における新しいパラダイムとして登場した。
本稿では,iNLPの概念の統一的定義と枠組みを提案することから,iNLPに関する包括的調査を行う。
論文 参考訳(メタデータ) (2023-05-22T17:18:29Z) - Variational Cross-Graph Reasoning and Adaptive Structured Semantics
Learning for Compositional Temporal Grounding [143.5927158318524]
テンポラルグラウンドティング(Temporal grounding)とは、クエリ文に従って、未編集のビデオから特定のセグメントを特定するタスクである。
新たに構成時間グラウンドタスクを導入し,2つの新しいデータセット分割を構築した。
ビデオや言語に内在する構造的意味論は、構成的一般化を実現する上で重要な要素である、と我々は主張する。
論文 参考訳(メタデータ) (2023-01-22T08:02:23Z) - Inherent Inconsistencies of Feature Importance [6.02357145653815]
特徴重要度は、予測結果に対する個々の特徴の寄与にスコアを割り当てる手法である。
本稿では,特徴重要度スコアの異なる文脈間のコヒーレントな関係を確立するために設計された公理的枠組みを提案する。
論文 参考訳(メタデータ) (2022-06-16T14:21:51Z) - BERT-ASC: Auxiliary-Sentence Construction for Implicit Aspect Learning
in Sentiment Analysis [4.008465268899542]
統合されたフレームワークにおけるアスペクト分類とアスペクトベースの感情サブタスクに対処することを提案する。
まず,意味的・統語的情報を協調して,暗黙的側面の補助文を構築するメカニズムを提案する。
次に、BERTは、自動構築された補助文に応答してアスペクト特化表現を学習することを推奨する。
論文 参考訳(メタデータ) (2022-03-22T13:12:27Z) - SentiPrompt: Sentiment Knowledge Enhanced Prompt-Tuning for Aspect-Based
Sentiment Analysis [22.758661494710047]
統一されたフレームワークで言語モデルをチューニングするためにSentiPromptを提案する。
側面、意見、極性に関する感情知識を、迅速かつ明示的に項関係をモデル化する。
提案手法は,三重項抽出,ペア抽出,および知覚分類によるアスペクト項抽出において,強いベースラインを達成できる。
論文 参考訳(メタデータ) (2021-09-17T01:56:06Z) - Dive into Ambiguity: Latent Distribution Mining and Pairwise Uncertainty
Estimation for Facial Expression Recognition [59.52434325897716]
DMUE(DMUE)という,アノテーションのあいまいさを2つの視点から解決するソリューションを提案する。
前者に対しては,ラベル空間における潜伏分布をよりよく記述するために,補助的マルチブランチ学習フレームワークを導入する。
後者の場合、インスタンス間の意味的特徴のペアワイズ関係を完全に活用して、インスタンス空間のあいまいさの程度を推定する。
論文 参考訳(メタデータ) (2021-04-01T03:21:57Z) - Panoptic Feature Fusion Net: A Novel Instance Segmentation Paradigm for
Biomedical and Biological Images [91.41909587856104]
本稿では,本研究における意味的特徴とインスタンス的特徴を統一するPanoptic Feature Fusion Net(PFFNet)を提案する。
提案するPFFNetには,インスタンス予測を意味的特徴に組み込むための残注意特徴融合機構が組み込まれている。
様々なバイオメディカルおよび生物学的データセットにおいて、最先端のいくつかの手法を上回ります。
論文 参考訳(メタデータ) (2020-02-15T09:19:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。