Weakly-Supervised PET Anomaly Detection using Implicitly-Guided Attention-Conditional Counterfactual Diffusion Modeling: a Multi-Center, Multi-Cancer, and Multi-Tracer Study
- URL: http://arxiv.org/abs/2405.00239v2
- Date: Sat, 08 Feb 2025 03:56:44 GMT
- Title: Weakly-Supervised PET Anomaly Detection using Implicitly-Guided Attention-Conditional Counterfactual Diffusion Modeling: a Multi-Center, Multi-Cancer, and Multi-Tracer Study
- Authors: Shadab Ahamed, Arman Rahmim,
- Abstract summary: We present a weakly-supervised Implicitly guided COuNterfactual diffusion model for Detecting Anomalies in PET images (IgCONDA-PET)
The training is conditioned on image class labels (healthy vs. unhealthy) via attention modules.
We perform counterfactual generation which facilitates "unhealthy-to-healthy" domain translation by generating a synthetic, healthy version of an unhealthy input image.
- Score: 0.391955592784358
- License:
- Abstract: Minimizing the need for pixel-level annotated data to train PET lesion detection and segmentation networks is highly desired and can be transformative, given time and cost constraints associated with expert annotations. Current un-/weakly-supervised anomaly detection methods rely on autoencoder or generative adversarial networks trained only on healthy data; however GAN-based networks are more challenging to train due to issues with simultaneous optimization of two competing networks, mode collapse, etc. In this paper, we present the weakly-supervised Implicitly guided COuNterfactual diffusion model for Detecting Anomalies in PET images (IgCONDA-PET). The solution is developed and validated using PET scans from six retrospective cohorts consisting of a total of 2652 cases containing both local and public datasets. The training is conditioned on image class labels (healthy vs. unhealthy) via attention modules, and we employ implicit diffusion guidance. We perform counterfactual generation which facilitates "unhealthy-to-healthy" domain translation by generating a synthetic, healthy version of an unhealthy input image, enabling the detection of anomalies through the calculated differences. The performance of our method was compared against several other deep learning based weakly-supervised or unsupervised methods as well as traditional methods like 41% SUVmax thresholding. We also highlight the importance of incorporating attention modules in our network for the detection of small anomalies. The code is publicly available at: https://github.com/ahxmeds/IgCONDA-PET.git.
Related papers
- Confident Pseudo-labeled Diffusion Augmentation for Canine Cardiomegaly Detection [7.9471205712560264]
Canine cardiomegaly, marked by an enlarged heart, poses serious health risks if undetected.
Current detection models often rely on small, poorly annotated datasets.
We propose a Confident Pseudo-labeled Diffusion Augmentation model for identifying canine cardiomegaly.
arXiv Detail & Related papers (2025-01-13T18:10:19Z) - From FDG to PSMA: A Hitchhiker's Guide to Multitracer, Multicenter Lesion Segmentation in PET/CT Imaging [0.9384264274298444]
We present our solution for the autoPET III challenge, targeting multitracer, multicenter generalization using the nnU-Net framework with the ResEncL architecture.
Key techniques include misalignment data augmentation and multi-modal pretraining across CT, MR, and PET datasets.
Compared to the default nnU-Net, which achieved a Dice score of 57.61, our model significantly improved performance with a Dice score of 68.40, alongside a reduction in false positive (FPvol: 7.82) and false negative (FNvol: 10.35) volumes.
arXiv Detail & Related papers (2024-09-14T16:39:17Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
This paper presents a coarse-to-fine PET reconstruction framework that consists of a coarse prediction module (CPM) and an iterative refinement module (IRM)
By delegating most of the computational overhead to the CPM, the overall sampling speed of our method can be significantly improved.
Two additional strategies, i.e., an auxiliary guidance strategy and a contrastive diffusion strategy, are proposed and integrated into the reconstruction process.
arXiv Detail & Related papers (2023-08-20T04:10:36Z) - A robust multi-domain network for short-scanning amyloid PET
reconstruction [0.18750851274087485]
This paper presents a robust multi-domain network designed to restore low-quality amyloid PET images acquired in a short period of time.
The proposed method is trained on pairs of PET images from short (2 minutes) and standard (20 minutes) scanning times, sourced from multiple domains.
arXiv Detail & Related papers (2023-05-17T06:31:10Z) - CG-3DSRGAN: A classification guided 3D generative adversarial network
for image quality recovery from low-dose PET images [10.994223928445589]
High radioactivity caused by the injected tracer dose is a major concern in PET imaging.
Reducing the dose leads to inadequate image quality for diagnostic practice.
CNNs-based methods have been developed for high quality PET synthesis from its low-dose counterparts.
arXiv Detail & Related papers (2023-04-03T05:39:02Z) - Seamless Iterative Semi-Supervised Correction of Imperfect Labels in
Microscopy Images [57.42492501915773]
In-vitro tests are an alternative to animal testing for the toxicity of medical devices.
Human fatigue plays a role in error making, making the use of deep learning appealing.
We propose Seamless Iterative Semi-Supervised correction of Imperfect labels (SISSI)
Our method successfully provides an adaptive early learning correction technique for object detection.
arXiv Detail & Related papers (2022-08-05T18:52:20Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
We introduce a novel technique, DAAIN, to detect out-of-distribution (OOD) inputs and adversarial attacks (AA)
Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution.
Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
arXiv Detail & Related papers (2021-05-30T22:07:13Z) - ASL to PET Translation by a Semi-supervised Residual-based
Attention-guided Convolutional Neural Network [3.2480194378336464]
Arterial Spin Labeling (ASL) MRI is a non-invasive, non-radioactive, and relatively cheap imaging technique for brain hemodynamic measurements.
We propose a convolutional neural network (CNN) based model for translating ASL to PET images.
arXiv Detail & Related papers (2021-03-08T22:06:02Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.