L0-regularized compressed sensing with Mean-field Coherent Ising Machines
- URL: http://arxiv.org/abs/2405.00366v2
- Date: Mon, 17 Jun 2024 12:36:00 GMT
- Title: L0-regularized compressed sensing with Mean-field Coherent Ising Machines
- Authors: Mastiyage Don Sudeera Hasaranga Gunathilaka, Yoshitaka Inui, Satoshi Kako, Kazushi Mimura, Masato Okada, Yoshihisa Yamamoto, Toru Aonishi,
- Abstract summary: We propose the mean-field CIM model, which is a physics-inspired solver without quantum noise.
Our results indicate that the proposed model has similar performance to physically accurate SDEs in both artificial and magnetic resonance imaging data.
- Score: 0.8292466835099597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coherent Ising Machine (CIM) is a network of optical parametric oscillators that solves combinatorial optimization problems by finding the ground state of an Ising Hamiltonian. As a practical application of CIM, Aonishi et al. proposed a quantum-classical hybrid system to solve optimization problems of L0-regularization-based compressed sensing (L0RBCS). Gunathilaka et al. has further enhanced the accuracy of the system. However, the computationally expensive CIM's stochastic differential equations (SDEs) limit the use of digital hardware implementations. As an alternative to Gunathilaka et al.'s CIM SDEs used previously, we propose using the mean-field CIM (MF-CIM) model, which is a physics-inspired heuristic solver without quantum noise. MF-CIM surmounts the high computational cost due to the simple nature of the differential equations (DEs). Furthermore, our results indicate that the proposed model has similar performance to physically accurate SDEs in both artificial and magnetic resonance imaging data, paving the way for implementing CIM-based L0RBCS on digital hardware such as Field Programmable Gate Arrays (FPGAs).
Related papers
- Encoding arbitrary Ising Hamiltonians on Spatial Photonic Ising Machines [0.0]
We introduce and experimentally validate a SPIM instance that enables direct control over the full interaction matrix.
We demonstrate the conformity of the experimentally measured Ising energy with the theoretically expected values and then proceed to solve both the unweighted and weighted graph problems.
Our approach greatly expands the applicability of SPIMs for real-world applications without sacrificing any of the inherent advantages of the system.
arXiv Detail & Related papers (2024-07-12T10:54:07Z) - Neural-Integrated Meshfree (NIM) Method: A differentiable
programming-based hybrid solver for computational mechanics [1.7132914341329852]
We present the neural-integrated meshfree (NIM) method, a differentiable programming-based hybrid meshfree approach within the field of computational mechanics.
NIM seamlessly integrates traditional physics-based meshfree discretization techniques with deep learning architectures.
Under the NIM framework, we propose two truly meshfree solvers: the strong form-based NIM (S-NIM) and the local variational form-based NIM (V-NIM)
arXiv Detail & Related papers (2023-11-21T17:57:12Z) - Mean-field Coherent Ising Machines with artificial Zeeman terms [0.0]
This paper focuses on the efficient implementation of Zeeman terms within the mean-field CIM model.
It is suitable for implementation in field programmable gate arrays (FPGAs) and large-scale simulations.
arXiv Detail & Related papers (2023-09-07T23:14:10Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - NAG-GS: Semi-Implicit, Accelerated and Robust Stochastic Optimizer [45.47667026025716]
We propose a novel, robust and accelerated iteration that relies on two key elements.
The convergence and stability of the obtained method, referred to as NAG-GS, are first studied extensively.
We show that NAG-arity is competitive with state-the-art methods such as momentum SGD with weight decay and AdamW for the training of machine learning models.
arXiv Detail & Related papers (2022-09-29T16:54:53Z) - Automatic and effective discovery of quantum kernels [43.702574335089736]
Quantum computing can empower machine learning models by enabling kernel machines to leverage quantum kernels for representing similarity measures between data.
We present a different approach, which employs optimization techniques, similar to those used in neural architecture search and AutoML.
The results obtained by testing our approach on a high-energy physics problem demonstrate that, in the best-case scenario, we can either match or improve testing accuracy with respect to the manual design approach.
arXiv Detail & Related papers (2022-09-22T16:42:14Z) - Deep Physics Corrector: A physics enhanced deep learning architecture
for solving stochastic differential equations [0.0]
We propose a novel gray-box modeling algorithm for physical systems governed by differential equations (SDE)
The proposed approach, referred to as the Deep Physics Corrector (DPC), blends approximate physics represented in terms of SDE with deep neural network (DNN)
We illustrate the performance of the proposed DPC on four benchmark examples from the literature.
arXiv Detail & Related papers (2022-09-20T14:30:07Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - L0 regularization-based compressed sensing with quantum-classical hybrid
approach [2.2710740436620314]
We propose a quantum-classical hybrid system consisting of a quantum machine and a classical digital processor.
We show that the system may exceed the estimation accuracy of L1-RBCS in actual situations.
arXiv Detail & Related papers (2021-02-22T23:33:19Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.