論文の概要: Discovering robust biomarkers of psychiatric disorders from resting-state functional MRI via graph neural networks: A systematic review
- arxiv url: http://arxiv.org/abs/2405.00577v2
- Date: Sat, 01 Feb 2025 09:26:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-04 16:03:04.670532
- Title: Discovering robust biomarkers of psychiatric disorders from resting-state functional MRI via graph neural networks: A systematic review
- Title(参考訳): グラフニューラルネットワークによる安静時機能MRIからの精神疾患のロバストなバイオマーカーの発見 : 系統的レビュー
- Authors: Yi Hao Chan, Deepank Girish, Sukrit Gupta, Jing Xia, Chockalingam Kasi, Yinan He, Conghao Wang, Jagath C. Rajapakse,
- Abstract要約: 障害予測タスクのためのfMRIデータセットに対して,GNNとモデル説明可能性技術がどのように適用されてきたかを検討する。
精神疾患に対するfMRIバイオマーカーを報告したGNNを用いて65種類の研究を同定した。
バイオマーカーのロバスト性を決定するために,客観的評価指標に基づく新しい標準を確立することを提案する。
- 参考スコア(独自算出の注目度): 4.799269666410891
- License:
- Abstract: Graph neural networks (GNN) have emerged as a popular tool for modelling functional magnetic resonance imaging (fMRI) datasets. Many recent studies have reported significant improvements in disorder classification performance via more sophisticated GNN designs and highlighted salient features that could be potential biomarkers of the disorder. However, existing methods of evaluating their robustness are often limited to cross-referencing with existing literature, which is a subjective and inconsistent process. In this review, we provide an overview of how GNN and model explainability techniques (specifically, feature attributors) have been applied to fMRI datasets for disorder prediction tasks, with an emphasis on evaluating the robustness of potential biomarkers produced for psychiatric disorders. Then, 65 studies using GNNs that reported potential fMRI biomarkers for psychiatric disorders (attention-deficit hyperactivity disorder, autism spectrum disorder, major depressive disorder, schizophrenia) published before 9 October 2024 were identified from 2 online databases (Scopus, PubMed). We found that while most studies have performant models, salient features highlighted in these studies (as determined by feature attribution scores) vary greatly across studies on the same disorder. Reproducibility of biomarkers is only limited to a small subset at the level of regions and few transdiagnostic biomarkers were identified. To address these issues, we suggest establishing new standards that are based on objective evaluation metrics to determine the robustness of these potential biomarkers. We further highlight gaps in the existing literature and put together a prediction-attribution-evaluation framework that could set the foundations for future research on discovering robust biomarkers of psychiatric disorders via GNNs.
- Abstract(参考訳): 機能的磁気共鳴イメージング(fMRI)データセットをモデル化するための一般的なツールとして、グラフニューラルネットワーク(GNN)が登場した。
近年の多くの研究は、より洗練されたGNN設計による障害分類性能の大幅な改善を報告し、障害の潜在的なバイオマーカーとなる可能性のある有能な特徴を強調している。
しかし、それらの堅牢性を評価する既存の方法はしばしば、主観的かつ矛盾したプロセスである既存の文献との相互参照に限られる。
本稿では、GNNとモデル説明可能性技術(特に特徴属性)が、障害予測タスクのためのfMRIデータセットにどのように適用されたかについて概説し、精神疾患に対する潜在的なバイオマーカーの堅牢性を評価することに焦点を当てる。
2024年10月9日以前に公表された精神疾患(注意欠陥性高活動障害、自閉症スペクトラム障害、大うつ病性障害、統合失調症)のfMRIバイオマーカーを2つのオンラインデータベース(Scopus, PubMed)から同定した。
その結果、ほとんどの研究にはパフォーマンスモデルがあるが、これらの研究で強調された健全な特徴(特徴属性スコアによって決定される)は、同じ障害の研究間で大きく異なることがわかった。
バイオマーカーの再現性は、地域レベルでの小さなサブセットに限られており、診断的バイオマーカーはほとんど同定されていない。
これらの課題に対処するために,これらのバイオマーカーのロバスト性を決定するために,客観的評価指標に基づく新しい標準を確立することを提案する。
我々は、既存の文献のギャップをさらに強調し、GNNを通して精神疾患の堅牢なバイオマーカーを発見するための将来の研究の基礎となる、予測・属性・評価の枠組みを構築した。
関連論文リスト
- Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
特にGemini-Vision-Series (Gemini) と GPT-4-Series (GPT-4) は、コンピュータビジョンのための人工知能のパラダイムシフトを象徴している。
本研究は,14の医用画像データセットを対象に,Gemini,GPT-4,および4つの一般的な大規模モデルの性能評価を行った。
論文 参考訳(メタデータ) (2024-07-08T09:08:42Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - A Demographic-Conditioned Variational Autoencoder for fMRI Distribution Sampling and Removal of Confounds [49.34500499203579]
変動型オートエンコーダ(VAE)ベースのモデルであるDemoVAEを作成し、人口統計学から fMRI の特徴を推定する。
ユーザが供給する人口動態に基づいて,高品質な合成fMRIデータを生成する。
論文 参考訳(メタデータ) (2024-05-13T17:49:20Z) - Highly Accurate Disease Diagnosis and Highly Reproducible Biomarker
Identification with PathFormer [32.26944736442376]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを分析するための主要なディープラーニングモデルである。
課題の根源は、生物学的シグナル伝達経路のユニークなグラフ構造である。
本稿では,バイオマーカーのランク付けと疾患診断の予測のために,シグナルネットワーク,優先知識,オミクスデータを統合した新しいGNNモデルアーキテクチャPathFormerを提案する。
論文 参考訳(メタデータ) (2024-02-11T18:23:54Z) - A marker-less human motion analysis system for motion-based biomarker
discovery in knee disorders [60.99112047564336]
NHSは低リスクの全ての患者に会うのが難しくなっているが、これはOA患者に限らない。
膝関節疾患の診断と治療経過のモニタリングのためのバイオマーカー自動同定法を提案する。
論文 参考訳(メタデータ) (2023-04-26T16:47:42Z) - Autism spectrum disorder classification based on interpersonal neural
synchrony: Can classification be improved by dyadic neural biomarkers using
unsupervised graph representation learning? [0.0]
ASDの中核的な側面の神経機構を明示的にマッピングする教師なしグラフ表現を導入する。
機能近赤外分光データによる最初の結果は、タスクに依存しない、解釈可能なグラフ表現の潜在的な予測能力を示している。
論文 参考訳(メタデータ) (2022-08-17T07:10:57Z) - Counterfactual Image Synthesis for Discovery of Personalized Predictive
Image Markers [0.293168019422713]
そこで本研究では,深部条件生成モデルを用いて,主観的疾患の進展に関連があるベースライン画像の局所像特徴を摂動させることが可能であることを示す。
本モデルでは, 臨床像を反映した画像特徴の変化により, 集団レベルでのMRI像の現況を予測し, 治療効果を検証した。
論文 参考訳(メタデータ) (2022-08-03T18:58:45Z) - Quantifying the Reproducibility of Graph Neural Networks using
Multigraph Brain Data [0.0]
グラフニューラルネットワーク(GNN)は、コンピュータビジョン、コンピュータ支援診断、および関連分野におけるいくつかの問題に取り組む際に、前例のない増殖を目撃している。
これまでの研究では、モデルの精度の向上に焦点が当てられていたが、GNNによって特定される最も差別的な特徴を定量化することは、臨床応用における信頼性に関する懸念を生じさせる無傷の問題である。
異なるモデル間で共有される最も差別的な特徴(バイオマーカー)によるGNNアセスメントのためのフレームワークを初めて提案する。我々のフレームワークの健全性を確認するため、トレーニング戦略やトレーニング戦略などのさまざまな要因を取り入れている。
論文 参考訳(メタデータ) (2021-09-06T05:31:02Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Pooling Regularized Graph Neural Network for fMRI Biomarker Analysis [29.489129970039873]
健全な領域を特定するための有望なアプローチは、グラフニューラルネットワーク(GNN)を使用することである。
本稿では,障害に関連する神経学的脳バイオマーカーを決定するために,新しい領域選択機構を備えた解釈可能なGNNフレームワークを提案する。
本稿では,バイオポイント自閉症スペクトラム障害 (ASD) fMRIデータセットにPR-GNNフレームワークを適用した。
論文 参考訳(メタデータ) (2020-07-29T04:19:36Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
アルツハイマー病(AD)に関連する機能的脳ネットワークの微妙な変化を特徴付けることは、疾患進行の早期診断と予測に重要である。
我々は、多重グラフガウス埋め込みモデル(MG2G)と呼ばれる新しいディープラーニング手法を開発した。
我々はMG2Gを用いて、MEG脳ネットワークの内在性潜在性次元を検出し、軽度認知障害(MCI)患者のADへの進行を予測し、MCIに関連するネットワーク変化を伴う脳領域を同定した。
論文 参考訳(メタデータ) (2020-05-08T02:29:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。