論文の概要: Diagnosis of Parkinson's Disease Using EEG Signals and Machine Learning Techniques: A Comprehensive Study
- arxiv url: http://arxiv.org/abs/2405.00741v1
- Date: Tue, 30 Apr 2024 04:25:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 20:52:21.454615
- Title: Diagnosis of Parkinson's Disease Using EEG Signals and Machine Learning Techniques: A Comprehensive Study
- Title(参考訳): 脳波信号と機械学習技術を用いたパーキンソン病の診断 : 総合的研究
- Authors: Maryam Allahbakhshi, Aylar Sadri, Seyed Omid Shahdi,
- Abstract要約: 本稿では,パーキンソン病のヒト脳波信号解析による診断方法を提案する。
本手法は,脳波信号解析技術と機械学習手法の総合的なレビューを取り入れたものである。
パーキンソン病診断に最適化された高度SVMモデルを開発した。
- 参考スコア(独自算出の注目度): 1.2972104025246092
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parkinson's disease is a widespread neurodegenerative condition necessitating early diagnosis for effective intervention. This paper introduces an innovative method for diagnosing Parkinson's disease through the analysis of human EEG signals, employing a Support Vector Machine (SVM) classification model. this research presents novel contributions to enhance diagnostic accuracy and reliability. Our approach incorporates a comprehensive review of EEG signal analysis techniques and machine learning methods. Drawing from recent studies, we have engineered an advanced SVM-based model optimized for Parkinson's disease diagnosis. Utilizing cutting-edge feature engineering, extensive hyperparameter tuning, and kernel selection, our method achieves not only heightened diagnostic accuracy but also emphasizes model interpretability, catering to both clinicians and researchers. Moreover, ethical concerns in healthcare machine learning, such as data privacy and biases, are conscientiously addressed. We assess our method's performance through experiments on a diverse dataset comprising EEG recordings from Parkinson's disease patients and healthy controls, demonstrating significantly improved diagnostic accuracy compared to conventional techniques. In conclusion, this paper introduces an innovative SVM-based approach for diagnosing Parkinson's disease from human EEG signals. Building upon the IEEE framework and previous research, its novelty lies in the capacity to enhance diagnostic accuracy while upholding interpretability and ethical considerations for practical healthcare applications. These advances promise to revolutionize early Parkinson's disease detection and management, ultimately contributing to enhanced patient outcomes and quality of life.
- Abstract(参考訳): パーキンソン病は、効果的な介入のために早期診断を必要とする広範な神経変性疾患である。
本稿では,パーキンソン病の脳波信号を解析し,SVM(Support Vector Machine)分類モデルを用いて診断する革新的な手法を提案する。
本研究は,診断精度と信頼性を高めるための新しい貢献を提示する。
本手法は,脳波信号解析技術と機械学習手法の総合的なレビューを取り入れたものである。
近年の研究では,パーキンソン病の診断に最適化された高度なSVMモデルを構築した。
提案手法は,最先端の特徴工学,広範ハイパーパラメータチューニング,カーネル選択を活用し,診断精度の向上だけでなく,臨床医と研究者の双方に配慮したモデル解釈性も重視する。
さらに、データプライバシやバイアスなど、医療機械学習における倫理的な懸念にも注意が払われている。
パーキンソン病患者からの脳波記録と健常度制御を含む多種多様なデータセットを用いて,本手法の性能評価を行い,従来の手法と比較して診断精度が有意に向上したことを示す。
そこで本研究では,パーキンソン病をヒト脳波信号から診断するための革新的なSVMベースのアプローチを提案する。
IEEEフレームワークと以前の研究に基づいて、その新規性は、実用的な医療アプリケーションに対する解釈可能性と倫理的考慮を保ちながら、診断精度を高める能力にある。
これらの進歩は初期のパーキンソン病の検出と管理に革命をもたらすことを約束し、最終的には患者の成果と生活の質の向上に寄与した。
関連論文リスト
- Early Recognition of Parkinson's Disease Through Acoustic Analysis and Machine Learning [0.0]
パーキンソン病(英: Parkinson's Disease、PD)は、音声を含む運動機能と非運動機能の両方に大きな影響を及ぼす進行性神経変性疾患である。
本稿では,音声データを用いたPD認識手法の総合的なレビューを行い,機械学習とデータ駆動アプローチの進歩を強調した。
ロジスティック回帰、SVM、ニューラルネットワークなど、さまざまな分類アルゴリズムが検討されている。
以上の結果から,特定の音響特性と高度な機械学習技術は,PDと健常者の間で効果的に区別できることが示唆された。
論文 参考訳(メタデータ) (2024-07-22T23:24:02Z) - A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions [66.40362209055023]
本研究の目的は,認知診断の現在のモデルについて,機械学習を用いた新たな展開に注目した調査を行うことである。
モデル構造,パラメータ推定アルゴリズム,モデル評価方法,適用例を比較して,認知診断モデルの最近の傾向を概観する。
論文 参考訳(メタデータ) (2024-07-07T18:02:00Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - A Foundational Framework and Methodology for Personalized Early and
Timely Diagnosis [84.6348989654916]
本稿では,早期診断とタイムリー診断のための基礎的枠組みを提案する。
診断過程を概説する決定論的アプローチに基づいている。
機械学習と統計手法を統合し、最適なパーソナライズされた診断経路を推定する。
論文 参考訳(メタデータ) (2023-11-26T14:42:31Z) - Parkinson's Disease Detection through Vocal Biomarkers and Advanced
Machine Learning Algorithms [0.0]
本研究は早期疾患予測の手段として, PD患者の声質変化の可能性について検討した。
XGBoost、LightGBM、Baging、AdaBoost、Support Vector Machineなど、さまざまな高度な機械学習アルゴリズムを活用する。
LightGBMは、100%の感度と94.43%の特異性を示し、他の機械学習アルゴリズムの精度とAUCスコアを上回った。
論文 参考訳(メタデータ) (2023-11-09T15:21:10Z) - The Significance of Machine Learning in Clinical Disease Diagnosis: A
Review [0.0]
本研究では、時系列医療指標における心拍データの伝達を改善するための機械学習アルゴリズムの能力について検討する。
検討中の要因は、アルゴリズムの利用、対象とする疾患の種類、採用されるデータの種類、応用、評価指標などである。
論文 参考訳(メタデータ) (2023-10-25T20:28:22Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Analysis, Identification and Prediction of Parkinson Disease Sub-Types and Progression through Machine Learning [5.982922468400901]
本稿では,パーキンソン病の研究において,新たな機械学習フレームワークを用いてPDを異なるサブタイプに分類し,その進展を予測することによって,画期的な進歩を示す。
この革新的なアプローチは、従来の方法論がしばしば見逃すPDマニフェストの微妙だが批判的なパターンを識別することを可能にする。
論文 参考訳(メタデータ) (2023-06-07T19:54:56Z) - AutoPrognosis 2.0: Democratizing Diagnostic and Prognostic Modeling in
Healthcare with Automated Machine Learning [72.2614468437919]
本稿では,診断・予後モデルを開発するための機械学習フレームワークAutoPrognosis 2.0を提案する。
我々は,英国バイオバンクを用いた糖尿病の予後リスクスコアを構築するための図解的アプリケーションを提供する。
我々のリスクスコアはWebベースの意思決定支援ツールとして実装されており、世界中の患者や臨床医がアクセスできる。
論文 参考訳(メタデータ) (2022-10-21T16:31:46Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Machine learning for the diagnosis of Parkinson's disease: A systematic
review [15.463800489731373]
我々は2020年2月14日まで,PubMed と IEEE Xplore データベースを用いて,系統的な文献レビューを行った。
関連情報として抽出され,本システムレビューで提示された計209件の研究結果を含む。
これらの研究は、臨床意思決定における機械学習手法と新しいバイオマーカーの適応の可能性を示す。
論文 参考訳(メタデータ) (2020-10-13T01:14:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。