論文の概要: Wake Vision: A Large-scale, Diverse Dataset and Benchmark Suite for TinyML Person Detection
- arxiv url: http://arxiv.org/abs/2405.00892v1
- Date: Wed, 1 May 2024 22:33:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 18:23:47.338245
- Title: Wake Vision: A Large-scale, Diverse Dataset and Benchmark Suite for TinyML Person Detection
- Title(参考訳): Wake Vision: TinyML人物検出のための大規模分散データセットとベンチマークスイート
- Authors: Colby Banbury, Emil Njor, Matthew Stewart, Pete Warden, Manjunath Kudlur, Nat Jeffries, Xenofon Fafoutis, Vijay Janapa Reddi,
- Abstract要約: 人検出に適した大規模で多様なデータセットであるWake Visionを紹介した。
Wake Visionは600万枚以上の画像で構成されている。
トレーニングにWake Visionを使用すると、確立されたベンチマークに比べて2.41%の精度が向上する。
- 参考スコア(独自算出の注目度): 6.885131990923132
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning applications on extremely low-power devices, commonly referred to as tiny machine learning (TinyML), promises a smarter and more connected world. However, the advancement of current TinyML research is hindered by the limited size and quality of pertinent datasets. To address this challenge, we introduce Wake Vision, a large-scale, diverse dataset tailored for person detection -- the canonical task for TinyML visual sensing. Wake Vision comprises over 6 million images, which is a hundredfold increase compared to the previous standard, and has undergone thorough quality filtering. Using Wake Vision for training results in a 2.41\% increase in accuracy compared to the established benchmark. Alongside the dataset, we provide a collection of five detailed benchmark sets that assess model performance on specific segments of the test data, such as varying lighting conditions, distances from the camera, and demographic characteristics of subjects. These novel fine-grained benchmarks facilitate the evaluation of model quality in challenging real-world scenarios that are often ignored when focusing solely on overall accuracy. Through an evaluation of a MobileNetV2 TinyML model on the benchmarks, we show that the input resolution plays a more crucial role than the model width in detecting distant subjects and that the impact of quantization on model robustness is minimal, thanks to the dataset quality. These findings underscore the importance of a detailed evaluation to identify essential factors for model development. The dataset, benchmark suite, code, and models are publicly available under the CC-BY 4.0 license, enabling their use for commercial use cases.
- Abstract(参考訳): 極低消費電力デバイス上の機械学習アプリケーション(一般的には小さな機械学習(TinyML))は、より賢くより接続された世界を約束する。
しかし、現在のTinyML研究の進歩は、関連するデータセットのサイズと品質の制限によって妨げられている。
この課題に対処するために、私たちは、人物検出に適した大規模で多様なデータセットである、TinyMLビジュアルセンシングの標準的なタスクであるWake Visionを紹介した。
Wake Visionは600万枚以上の画像で構成されており、これは以前の標準より100倍も大きくなり、徹底的な品質のフィルタリングが行われている。
Wake Visionをトレーニングに使用すると、既存のベンチマークと比べて2.41倍の精度が向上する。
データセットの他に、様々な照明条件、カメラからの距離、被験者の人口統計特性など、テストデータの特定のセグメントでモデル性能を評価する5つの詳細なベンチマークセットのコレクションを提供する。
これらの新しいきめ細かいベンチマークは、全体的な正確性だけに焦点を合わせると無視される現実のシナリオに挑戦する上で、モデル品質の評価を促進する。
ベンチマークによるMobileNetV2 TinyMLモデルの評価により,入力解像度は遠距離対象の検出においてモデル幅よりも重要な役割を担い,また,データセットの品質により,モデルロバスト性に対する量子化の影響は最小限であることを示す。
これらの結果は、モデル開発に不可欠な要素を特定するための詳細な評価の重要性を浮き彫りにした。
データセット、ベンチマークスイート、コード、モデルはCC-BY 4.0ライセンスの下で公開されている。
関連論文リスト
- Less is More: High-value Data Selection for Visual Instruction Tuning [127.38740043393527]
本稿では,視覚的命令データの冗長性を排除し,トレーニングコストを削減するために,高価値なデータ選択手法TIVEを提案する。
約15%のデータしか使用していない我々のアプローチは、8つのベンチマークで全データ微調整モデルに匹敵する平均性能を実現することができる。
論文 参考訳(メタデータ) (2024-03-14T16:47:25Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
限られたデータセットに基づいて,効率的な自己回帰に基づく視覚モデルを構築する。
このモデルは,高レベル・低レベルのセマンティック理解の両方にまたがる視覚的タスクにおいて,その習熟度をいかに達成するかを実証する。
我々の経験的評価は、モデルが様々なタスクに適応する際の機敏さを強調し、パラメータフットプリントの大幅な削減を図った。
論文 参考訳(メタデータ) (2024-02-07T13:41:53Z) - SeiT++: Masked Token Modeling Improves Storage-efficient Training [36.95646819348317]
近年のDeep Neural Network(DNN)モデルでは,コンピュータビジョンタスクのパフォーマンスが大幅に向上している。
高度に一般化可能で高性能なビジョンモデルを実現するには、拡張データセットが必要である。
SeiTによる最近のブレークスルーは、Vector-Quantized (VQ)特徴ベクトル(トークン)を視覚分類のためのネットワーク入力として使用することを提案した。
本稿では,自己指導型事前学習のためのMasked Token Modeling (MTM)を統合し,SeyTを拡張した。
論文 参考訳(メタデータ) (2023-12-15T04:11:34Z) - Learning Generalizable Perceptual Representations for Data-Efficient
No-Reference Image Quality Assessment [7.291687946822539]
最先端のNR-IQA技術の大きな欠点は、多数の人間のアノテーションに依存していることである。
低レベルな特徴の学習を、新しい品質に配慮したコントラスト損失を導入することで、歪みタイプの学習を可能にする。
両経路からゼロショット品質の予測を、完全に盲目な環境で設計する。
論文 参考訳(メタデータ) (2023-12-08T05:24:21Z) - Exploring Dataset-Scale Indicators of Data Quality [23.017200605976807]
現代のコンピュータビジョン基礎モデルは膨大な量のデータに基づいて訓練されており、経済と環境のコストが増大している。
近年の研究では、データ品質の向上はデータ量の必要性を大幅に減らすことが示唆されている。
与えられたデータセットの品質は、異なるサンプルレベルとデータセットレベルに分解できると仮定する。
論文 参考訳(メタデータ) (2023-11-07T14:14:32Z) - Delving Deeper into Data Scaling in Masked Image Modeling [145.36501330782357]
視覚認識のためのマスク付き画像モデリング(MIM)手法のスケーリング能力に関する実証的研究を行った。
具体的には、Webで収集したCoyo-700Mデータセットを利用する。
我々のゴールは、データとモデルのサイズの異なるスケールでダウンストリームタスクのパフォーマンスがどのように変化するかを調べることです。
論文 参考訳(メタデータ) (2023-05-24T15:33:46Z) - Unified Visual Relationship Detection with Vision and Language Models [89.77838890788638]
この研究は、複数のデータセットからラベル空間の結合を予測する単一の視覚的関係検出器のトレーニングに焦点を当てている。
視覚と言語モデルを活用した統合視覚関係検出のための新しいボトムアップ手法UniVRDを提案する。
人物体間相互作用検出とシーングラフ生成の双方による実験結果から,本モデルの競合性能が示された。
論文 参考訳(メタデータ) (2023-03-16T00:06:28Z) - Unsupervised Vision-and-Language Pre-training Without Parallel Images
and Captions [92.47566804182338]
画像キャプションコーパスを使わずに教師なし事前学習により、強力なV&L表現モデルを学習できるかどうかを検討する。
特に,テキストのみのコーパスと画像のみのコーパスで,マスク・アンド・予測の事前学習を行うことを提案する。
4つの英語のV&Lベンチマークで、アライメントされたデータで事前訓練されたモデルに近いこのような単純なアプローチの性能が得られた。
論文 参考訳(メタデータ) (2020-10-24T08:17:54Z) - Stance Detection Benchmark: How Robust Is Your Stance Detection? [65.91772010586605]
Stance Detection (StD) は、あるトピックやクレームに対する著者の姿勢を検出することを目的としている。
マルチデータセット学習環境において、さまざまなドメインの10のStDデータセットから学習するStDベンチマークを導入する。
このベンチマーク設定では、5つのデータセットに新しい最先端結果を表示することができます。
論文 参考訳(メタデータ) (2020-01-06T13:37:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。