論文の概要: Efficient Data-driven Scene Simulation using Robotic Surgery Videos via Physics-embedded 3D Gaussians
- arxiv url: http://arxiv.org/abs/2405.00956v1
- Date: Thu, 2 May 2024 02:34:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 18:04:13.467425
- Title: Efficient Data-driven Scene Simulation using Robotic Surgery Videos via Physics-embedded 3D Gaussians
- Title(参考訳): 物理埋め込み3Dガウスによるロボット手術映像を用いた効率的なデータ駆動シーンシミュレーション
- Authors: Zhenya Yang, Kai Chen, Yonghao Long, Qi Dou,
- Abstract要約: 立体内視鏡画像から3D Gaussianを学習可能な手術シーンの表現として紹介する。
本研究では3次元ガウスに物理特性を統合したマテリアルポイント法を適用し,現実的なシーン変形を実現する。
以上の結果から,内視鏡的画像から外科的シーンを効率的に再構成し,シミュレートし,外科的シーンを再構築するのにほんの数分しか要しないことが明らかとなった。
- 参考スコア(独自算出の注目度): 19.590481146949685
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Surgical scene simulation plays a crucial role in surgical education and simulator-based robot learning. Traditional approaches for creating these environments with surgical scene involve a labor-intensive process where designers hand-craft tissues models with textures and geometries for soft body simulations. This manual approach is not only time-consuming but also limited in the scalability and realism. In contrast, data-driven simulation offers a compelling alternative. It has the potential to automatically reconstruct 3D surgical scenes from real-world surgical video data, followed by the application of soft body physics. This area, however, is relatively uncharted. In our research, we introduce 3D Gaussian as a learnable representation for surgical scene, which is learned from stereo endoscopic video. To prevent over-fitting and ensure the geometrical correctness of these scenes, we incorporate depth supervision and anisotropy regularization into the Gaussian learning process. Furthermore, we apply the Material Point Method, which is integrated with physical properties, to the 3D Gaussians to achieve realistic scene deformations. Our method was evaluated on our collected in-house and public surgical videos datasets. Results show that it can reconstruct and simulate surgical scenes from endoscopic videos efficiently-taking only a few minutes to reconstruct the surgical scene-and produce both visually and physically plausible deformations at a speed approaching real-time. The results demonstrate great potential of our proposed method to enhance the efficiency and variety of simulations available for surgical education and robot learning.
- Abstract(参考訳): 手術シーンシミュレーションは,外科教育とシミュレータに基づくロボット学習において重要な役割を担っている。
これらの環境を外科的シーンで作る従来のアプローチは、デザイナーがソフトボディシミュレーションのためのテクスチャとジオメトリーを備えた手作りの組織をモデル化する、労働集約的なプロセスを含んでいる。
この手動のアプローチは時間を要するだけでなく、スケーラビリティやリアリズムにも制限があります。
対照的に、データ駆動シミュレーションは魅力的な代替手段を提供する。
実世界の手術映像データから3Dの手術シーンを自動的に再構築し、ソフトボディ物理を応用する可能性がある。
しかし、この地域は比較的無漁である。
本研究では3D Gaussianを手術シーンの学習可能な表現として紹介し,立体内視鏡映像から学習した。
これらのシーンの過度な適合を防止し、幾何学的正当性を確保するため、奥行き監視と異方性正規化をガウス学習プロセスに組み込む。
さらに,3次元ガウスに物理特性を統合したマテリアルポイント法を適用し,現実的なシーン変形を実現する。
本手法を社内および公開外科用ビデオデータセットで評価した。
以上の結果から, 内視鏡的画像からの手術シーンの再構築とシミュレーションを効率的に行うことができ, 手術シーンの再構築に数分しかかからず, リアルタイムに近づく速度で視覚的, 身体的両面の変形を生成できることが示唆された。
その結果,手術教育やロボット学習で利用可能なシミュレーションの効率性と多様性を高めるための提案手法の可能性が示唆された。
関連論文リスト
- SurgicalGaussian: Deformable 3D Gaussians for High-Fidelity Surgical Scene Reconstruction [17.126895638077574]
内視鏡的ビデオにおける変形性組織の動的再構成は、ロボット支援手術の鍵となる技術である。
NeRFは、シーン内のオブジェクトの複雑な詳細をキャプチャするのに苦労します。
我々のネットワークは、レンダリング品質、レンダリング速度、GPU使用率など、多くの面で既存の手法よりも優れています。
論文 参考訳(メタデータ) (2024-07-06T09:31:30Z) - DreamPhysics: Learning Physical Properties of Dynamic 3D Gaussians with Video Diffusion Priors [77.34056839349076]
本稿では,3次元ガウス散乱の物理特性をビデオ拡散先行値で推定するDreamPhysicsを提案する。
本手法は,適切な物理パラメータを持つ物質点法シミュレータに基づいて,現実的な動きを持つ4次元コンテンツを生成する。
論文 参考訳(メタデータ) (2024-06-03T16:05:25Z) - Creating a Digital Twin of Spinal Surgery: A Proof of Concept [68.37190859183663]
手術デジタル化は、現実世界の手術の仮想レプリカを作成するプロセスである。
脊椎外科手術に応用した手術デジタル化のための概念実証(PoC)を提案する。
5台のRGB-Dカメラを外科医の動的3D再構成に、ハイエンドカメラを解剖学の3D再構成に、赤外線ステレオカメラを手術器具追跡に、レーザースキャナーを手術室の3D再構成とデータ融合に使用した。
論文 参考訳(メタデータ) (2024-03-25T13:09:40Z) - SAMSNeRF: Segment Anything Model (SAM) Guides Dynamic Surgical Scene
Reconstruction by Neural Radiance Field (NeRF) [4.740415113160021]
本稿では,Segment Anything Model(SAM)とNeRF技術を組み合わせたSAMSNeRFという新しい手法を提案する。
内視鏡下外科的画像を用いた実験の結果,高忠実度ダイナミックな手術シーンの再構築に成功していることが示された。
論文 参考訳(メタデータ) (2023-08-22T20:31:00Z) - Reconfigurable Data Glove for Reconstructing Physical and Virtual Grasps [100.72245315180433]
本研究では,人間の手-物体相互作用の異なるモードを捉えるために,再構成可能なデータグローブの設計を提案する。
グローブは3つのモードで動作し、異なる特徴を持つ様々な下流タスクを実行する。
i)手の動きと関連力を記録し,(ii)VRの操作流速を改善するとともに,(iii)様々なツールの現実的なシミュレーション効果を生み出すことにより,システムの3つのモードを評価する。
論文 参考訳(メタデータ) (2023-01-14T05:35:50Z) - NeuPhysics: Editable Neural Geometry and Physics from Monocular Videos [82.74918564737591]
本稿では,モノクラーRGBビデオ入力のみから動的シーンの3次元形状と物理パラメータを学習する手法を提案する。
実験により,提案手法は,競合するニューラルフィールドアプローチと比較して,動的シーンのメッシュとビデオの再構成に優れることを示した。
論文 参考訳(メタデータ) (2022-10-22T04:57:55Z) - Neural Rendering for Stereo 3D Reconstruction of Deformable Tissues in
Robotic Surgery [18.150476919815382]
内視鏡的ステレオビデオを用いたロボット手術における軟部組織の再構築は,多くの応用において重要である。
これまでの作業は主に、複雑な手術シーンを扱うのに苦労するSLAMベースのアプローチに依存していた。
近年の神経レンダリングの進歩に触発されて,変形性組織再構築のための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2022-06-30T13:06:27Z) - A Differentiable Recipe for Learning Visual Non-Prehensile Planar
Manipulation [63.1610540170754]
視覚的非包括的平面操作の問題に焦点をあてる。
本稿では,ビデオデコードニューラルモデルと接触力学の先行情報を組み合わせた新しいアーキテクチャを提案する。
モジュラーで完全に差別化可能なアーキテクチャは、目に見えないオブジェクトやモーションの学習専用手法よりも優れていることが分かりました。
論文 参考訳(メタデータ) (2021-11-09T18:39:45Z) - E-DSSR: Efficient Dynamic Surgical Scene Reconstruction with
Transformer-based Stereoscopic Depth Perception [15.927060244702686]
28 fpsの高ダイナミックな手術シーンに対して,効率的な再建パイプラインを提案する。
具体的には,効率的な深度推定のための変圧器を用いた立体視深度知覚を設計する。
提案したパイプラインを,公開Hamlyn Centre内視鏡ビデオデータセットと社内のDaVinciロボット手術データセットの2つのデータセットで評価した。
論文 参考訳(メタデータ) (2021-07-01T05:57:41Z) - Recurrent and Spiking Modeling of Sparse Surgical Kinematics [0.8458020117487898]
ますます多くの研究が、手術ロボットが捉えたビデオやキネマティックなデータを機械学習で分析している。
本研究では,同様のスキルレベルの外科医を予測するために,キネマティックデータのみを用いることの可能性を検討する。
本報告では, 運動特性のみに基づいて, シミュレーションエクササイズにおいて, ほぼ完全スコアの手術者を特定することが可能である。
論文 参考訳(メタデータ) (2020-05-12T15:41:45Z) - Occlusion resistant learning of intuitive physics from videos [52.25308231683798]
人工システムの鍵となる能力は、オブジェクト間の物理的相互作用を理解し、状況の将来的な結果を予測することである。
この能力は直感的な物理学と呼ばれ、近年注目されており、ビデオシーケンスからこれらの物理規則を学ぶためのいくつかの方法が提案されている。
論文 参考訳(メタデータ) (2020-04-30T19:35:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。