論文の概要: Explicitly Modeling Universality into Self-Supervised Learning
- arxiv url: http://arxiv.org/abs/2405.01053v3
- Date: Thu, 23 May 2024 07:06:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 12:57:52.098632
- Title: Explicitly Modeling Universality into Self-Supervised Learning
- Title(参考訳): 自己教師付き学習における普遍性の明示的モデリング
- Authors: Jingyao Wang, Wenwen Qiang, Zeen Song, Lingyu Si, Jiangmeng Li, Changwen Zheng, Bing Su,
- Abstract要約: 自己教師型学習(SSL)における普遍性の理論的定義を提供する。
我々は、普遍性をSSLに明示的にモデル化する、GeSSLと呼ばれる一般的なSSLフレームワークを提案する。
- 参考スコア(独自算出の注目度): 23.066639258803196
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The goal of universality in self-supervised learning (SSL) is to learn universal representations from unlabeled data and achieve excellent performance on all samples and tasks. However, these methods lack explicit modeling of the universality in the learning objective, and the related theoretical understanding remains limited. This may cause models to overfit in data-scarce situations and generalize poorly in real life. To address these issues, we provide a theoretical definition of universality in SSL, which constrains both the learning and evaluation universality of the SSL models from the perspective of discriminability, transferability, and generalization. Then, we propose a $\sigma$-measurement to help quantify the score of one SSL model's universality. Based on the definition and measurement, we propose a general SSL framework, called GeSSL, to explicitly model universality into SSL. It introduces a self-motivated target based on $\sigma$-measurement, which enables the model to find the optimal update direction towards universality. Extensive theoretical and empirical evaluations demonstrate the superior performance of GeSSL.
- Abstract(参考訳): 自己教師付き学習(SSL)における普遍性の目標は、ラベルのないデータから普遍的な表現を学習し、すべてのサンプルやタスクにおいて優れたパフォーマンスを達成することである。
しかし、これらの手法は学習目的における普遍性の明示的なモデリングを欠いているため、関連する理論的理解は限られている。
これにより、モデルはデータスカースな状況に過度に適合し、現実の生活であまり一般化しない可能性がある。
これらの問題に対処するため、SSLモデルの学習と評価の普遍性の両方を、識別可能性、転送可能性、一般化の観点から制約する、SSLにおける普遍性の理論的定義を提供する。
そこで我々は,あるSSLモデルの普遍性のスコアの定量化を支援するために,$\sigma$-measurementを提案する。
定義と測定に基づいて、汎用性をSSLに明示的にモデル化する、GeSSLと呼ばれる一般的なSSLフレームワークを提案する。
これは$\sigma$-measurementに基づく自己動機的ターゲットを導入し、モデルが普遍性に対する最適な更新方向を見つけることを可能にする。
広範囲な理論的および経験的評価は、GeSSLの優れた性能を示している。
関連論文リスト
- Large Language Models are Interpretable Learners [53.56735770834617]
本稿では,Large Language Models(LLM)とシンボルプログラムの組み合わせによって,表現性と解釈可能性のギャップを埋めることができることを示す。
自然言語プロンプトを持つ事前訓練されたLLMは、生の入力を自然言語の概念に変換することができる解釈可能な膨大なモジュールセットを提供する。
LSPが学んだ知識は自然言語の記述と記号規則の組み合わせであり、人間(解釈可能)や他のLLMに容易に転送できる。
論文 参考訳(メタデータ) (2024-06-25T02:18:15Z) - Reinforcement Learning-Guided Semi-Supervised Learning [20.599506122857328]
本稿では,SSLを片腕バンディット問題として定式化する新しい強化学習ガイド型SSL手法 RLGSSL を提案する。
RLGSSLは、ラベル付きデータとラベルなしデータのバランスを保ち、一般化性能を向上させるために、慎重に設計された報酬関数を組み込んでいる。
我々は,複数のベンチマークデータセットに対する広範な実験を通じてRCGSSLの有効性を実証し,我々の手法が最先端のSSL手法と比較して一貫した優れた性能を実現することを示す。
論文 参考訳(メタデータ) (2024-05-02T21:52:24Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adapt adjust of language model based on specific downstream task。
提案手法は,様々なバックボーンやベンチマーク上での最先端性能を実証し,最小限の忘れを伴い,フルセットおよび少数ショットのシナリオにおいて効果的な連続学習を実現する。
論文 参考訳(メタデータ) (2024-04-11T04:22:15Z) - A Probabilistic Model behind Self-Supervised Learning [53.64989127914936]
自己教師付き学習(SSL)では、アノテートラベルなしで補助的なタスクを通じて表現が学習される。
自己教師型学習のための生成潜在変数モデルを提案する。
識別性SSLのいくつかのファミリーは、表現に匹敵する分布を誘導することを示す。
論文 参考訳(メタデータ) (2024-02-02T13:31:17Z) - Evaluating Fairness in Self-supervised and Supervised Models for
Sequential Data [10.626503137418636]
自己教師型学習(SSL)は,大規模モデルのデファクトトレーニングパラダイムとなっている。
本研究では,事前学習と微調整が公正性に及ぼす影響について検討する。
論文 参考訳(メタデータ) (2024-01-03T09:31:43Z) - Representation Learning Dynamics of Self-Supervised Models [7.289672463326423]
自己監視学習(SSL)は、非競合データから表現を学習するための重要なパラダイムである。
SSLモデルの学習力学、特に対照的な損失と非対照的な損失を最小化して得られる表現について検討する。
グラスマン多様体上の勾配降下を用いて訓練されたSSLモデルの正確な学習ダイナミクスを導出する。
論文 参考訳(メタデータ) (2023-09-05T07:48:45Z) - Benchmark for Uncertainty & Robustness in Self-Supervised Learning [0.0]
セルフ・スーパーバイザード・ラーニングは現実世界のアプリケーション、特に医療や自動運転車のようなデータ・ハングリーな分野に不可欠である。
本稿では Jigsaw Puzzles, Context, Rotation, Geometric Transformations Prediction for vision や BERT や GPT for Language Task など,SSL メソッドの変種について検討する。
我々のゴールは、実験から出力されたベンチマークを作成し、信頼性のある機械学習で新しいSSLメソッドの出発点を提供することです。
論文 参考訳(メタデータ) (2022-12-23T15:46:23Z) - Semi-Supervised and Unsupervised Deep Visual Learning: A Survey [76.2650734930974]
半教師なし学習と教師なし学習は、ラベルなしの視覚データから学ぶための有望なパラダイムを提供する。
本稿では, 半教師付き学習(SSL)と非教師付き学習(UL)の先進的な深層学習アルゴリズムについて, 統一的な視点による視覚的認識について概説する。
論文 参考訳(メタデータ) (2022-08-24T04:26:21Z) - A Study of the Generalizability of Self-Supervised Representations [0.0]
近年の自己教師付き学習(SSL)により、ラベルのないデータから一般化可能な視覚表現を学習できるようになった。
本稿では,SSLモデルとSLモデルの一般化可能性について,その予測精度および予測信頼度を用いて検討する。
SSL表現はSL表現と比較して一般化可能であることを示す。
論文 参考訳(メタデータ) (2021-09-19T15:57:37Z) - Meta-Learned Attribute Self-Gating for Continual Generalized Zero-Shot
Learning [82.07273754143547]
トレーニング中に見られないカテゴリにモデルを一般化するためのメタ連続ゼロショット学習(MCZSL)アプローチを提案する。
属性の自己決定とスケールしたクラス正規化をメタラーニングベースのトレーニングと組み合わせることで、最先端の成果を上回ることができるのです。
論文 参考訳(メタデータ) (2021-02-23T18:36:14Z) - On Data-Augmentation and Consistency-Based Semi-Supervised Learning [77.57285768500225]
最近提案された整合性に基づく半教師付き学習(SSL)手法は,複数のSSLタスクにおいて最先端技術である。
これらの進歩にもかかわらず、これらの手法の理解はまだ比較的限られている。
論文 参考訳(メタデータ) (2021-01-18T10:12:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。