論文の概要: On the Universality of Self-Supervised Representation Learning
- arxiv url: http://arxiv.org/abs/2405.01053v4
- Date: Mon, 17 Feb 2025 12:50:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:05:49.216838
- Title: On the Universality of Self-Supervised Representation Learning
- Title(参考訳): 自己監督型表現学習の普遍性について
- Authors: Wenwen Qiang, Jingyao Wang, Lingyu Si, Chuxiong Sun, Fuchun Sun, Hui Xiong,
- Abstract要約: i) 識別可能性: トレーニングサンプルで良好に動作すること; (ii) 一般化: 目に見えないデータセットで良好に動作すること; (iii) 転送可能性。
その重要性にもかかわらず、現在の自己教師付き学習法は普遍性の明示的なモデリングを欠いている。
- 参考スコア(独自算出の注目度): 34.41598671528215
- License:
- Abstract: In this paper, we investigate the characteristics that define a good representation or model. We propose that such a representation or model should possess universality, characterized by: (i) discriminability: performing well on training samples; (ii) generalization: performing well on unseen datasets; and (iii) transferability: performing well on unseen tasks with distribution shifts. Despite its importance, current self-supervised learning (SSL) methods lack explicit modeling of universality, and theoretical analysis remains underexplored. To address these issues, we aim to explore and incorporate universality into SSL. Specifically, we first revisit SSL from a task perspective and find that each mini-batch can be viewed as a multi-class classification task. We then propose that a universal SSL model should achieve: (i) learning universality by minimizing loss across all training samples, and (ii) evaluation universality by learning causally invariant representations that generalize well to unseen tasks. To quantify this, we introduce a $\sigma$-measurement that assesses the gap between the performance of SSL model and optimal task-specific models. Furthermore, to model universality, we propose the GeSSL framework. It first learns task-specific models by minimizing SSL loss, then incorporates future updates to enhance discriminability, and finally integrates these models to learn from multiple tasks. Theoretical and empirical evidence supports the effectiveness of GeSSL.
- Abstract(参考訳): 本稿では,良い表現やモデルを定義する特徴について考察する。
このような表現やモデルが普遍性を持つべきであると提案する。
一 識別性:訓練サンプルにおいてよく行うこと。
(ii)一般化:見知らぬデータセットでうまく機能し、
(三)伝達可能性:分布シフトを伴う見当たらないタスクをうまく行うこと。
その重要性にもかかわらず、現在の自己教師付き学習(SSL)手法は普遍性の明示的なモデリングを欠いている。
これらの問題に対処するために、普遍性をSSLに探求し、組み込むことを目標としています。
具体的には,タスクの観点からSSLを再検討し,各ミニバッチをマルチクラス分類タスクとみなすことができることを示す。
次に、普遍的なSSLモデルを実現することを提案する。
一 すべての訓練サンプルの損失を最小化して普遍性を学ぶこと。
(2)不明瞭なタスクによく一般化する因果不変表現の学習による普遍性の評価。
これの定量化のために,SSLモデルの性能と最適なタスク固有モデルとのギャップを評価する$\sigma$-measurementを導入する。
さらに、普遍性をモデル化するために、GeSSLフレームワークを提案する。
まず、SSL損失を最小限にしてタスク固有のモデルを学習し、次に、将来のアップデートを取り入れて差別性を高め、最後にこれらのモデルを統合して複数のタスクから学習する。
理論的および実証的な証拠はGeSSLの有効性を支持する。
関連論文リスト
- OwMatch: Conditional Self-Labeling with Consistency for Open-World Semi-Supervised Learning [4.462726364160216]
半教師付き学習(SSL)は、注釈のないデータの可能性を活用するための堅牢なフレームワークを提供する。
オープンワールドSSL(OwSSL)の出現は、ラベルのないデータが目に見えないクラスのサンプルを包含する、より実践的な課題をもたらす。
我々は,条件付き自己ラベルとオープンワールド階層しきい値を組み合わせたOwMatchという効果的なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-04T06:07:43Z) - Large Language Models are Interpretable Learners [53.56735770834617]
本稿では,Large Language Models(LLM)とシンボルプログラムの組み合わせによって,表現性と解釈可能性のギャップを埋めることができることを示す。
自然言語プロンプトを持つ事前訓練されたLLMは、生の入力を自然言語の概念に変換することができる解釈可能な膨大なモジュールセットを提供する。
LSPが学んだ知識は自然言語の記述と記号規則の組み合わせであり、人間(解釈可能)や他のLLMに容易に転送できる。
論文 参考訳(メタデータ) (2024-06-25T02:18:15Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adapt adjust of language model based on specific downstream task。
提案手法は,様々なバックボーンやベンチマーク上での最先端性能を実証し,最小限の忘れを伴い,フルセットおよび少数ショットのシナリオにおいて効果的な連続学習を実現する。
論文 参考訳(メタデータ) (2024-04-11T04:22:15Z) - A Probabilistic Model Behind Self-Supervised Learning [53.64989127914936]
自己教師付き学習(SSL)では、アノテートラベルなしで補助的なタスクを通じて表現が学習される。
自己教師型学習のための生成潜在変数モデルを提案する。
対照的な方法を含む識別的SSLのいくつかのファミリーは、表現に匹敵する分布を誘導することを示した。
論文 参考訳(メタデータ) (2024-02-02T13:31:17Z) - Evaluating Fairness in Self-supervised and Supervised Models for
Sequential Data [10.626503137418636]
自己教師型学習(SSL)は,大規模モデルのデファクトトレーニングパラダイムとなっている。
本研究では,事前学習と微調整が公正性に及ぼす影響について検討する。
論文 参考訳(メタデータ) (2024-01-03T09:31:43Z) - Representation Learning Dynamics of Self-Supervised Models [7.289672463326423]
自己監視学習(SSL)は、非競合データから表現を学習するための重要なパラダイムである。
SSLモデルの学習力学、特に対照的な損失と非対照的な損失を最小化して得られる表現について検討する。
グラスマン多様体上の勾配降下を用いて訓練されたSSLモデルの正確な学習ダイナミクスを導出する。
論文 参考訳(メタデータ) (2023-09-05T07:48:45Z) - Benchmark for Uncertainty & Robustness in Self-Supervised Learning [0.0]
セルフ・スーパーバイザード・ラーニングは現実世界のアプリケーション、特に医療や自動運転車のようなデータ・ハングリーな分野に不可欠である。
本稿では Jigsaw Puzzles, Context, Rotation, Geometric Transformations Prediction for vision や BERT や GPT for Language Task など,SSL メソッドの変種について検討する。
我々のゴールは、実験から出力されたベンチマークを作成し、信頼性のある機械学習で新しいSSLメソッドの出発点を提供することです。
論文 参考訳(メタデータ) (2022-12-23T15:46:23Z) - Semi-Supervised and Unsupervised Deep Visual Learning: A Survey [76.2650734930974]
半教師なし学習と教師なし学習は、ラベルなしの視覚データから学ぶための有望なパラダイムを提供する。
本稿では, 半教師付き学習(SSL)と非教師付き学習(UL)の先進的な深層学習アルゴリズムについて, 統一的な視点による視覚的認識について概説する。
論文 参考訳(メタデータ) (2022-08-24T04:26:21Z) - A Study of the Generalizability of Self-Supervised Representations [0.0]
近年の自己教師付き学習(SSL)により、ラベルのないデータから一般化可能な視覚表現を学習できるようになった。
本稿では,SSLモデルとSLモデルの一般化可能性について,その予測精度および予測信頼度を用いて検討する。
SSL表現はSL表現と比較して一般化可能であることを示す。
論文 参考訳(メタデータ) (2021-09-19T15:57:37Z) - Meta-Learned Attribute Self-Gating for Continual Generalized Zero-Shot
Learning [82.07273754143547]
トレーニング中に見られないカテゴリにモデルを一般化するためのメタ連続ゼロショット学習(MCZSL)アプローチを提案する。
属性の自己決定とスケールしたクラス正規化をメタラーニングベースのトレーニングと組み合わせることで、最先端の成果を上回ることができるのです。
論文 参考訳(メタデータ) (2021-02-23T18:36:14Z) - On Data-Augmentation and Consistency-Based Semi-Supervised Learning [77.57285768500225]
最近提案された整合性に基づく半教師付き学習(SSL)手法は,複数のSSLタスクにおいて最先端技術である。
これらの進歩にもかかわらず、これらの手法の理解はまだ比較的限られている。
論文 参考訳(メタデータ) (2021-01-18T10:12:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。