Dense dipole-dipole-coupled two-level systems in a thermal bath
- URL: http://arxiv.org/abs/2405.01059v1
- Date: Thu, 2 May 2024 07:34:03 GMT
- Title: Dense dipole-dipole-coupled two-level systems in a thermal bath
- Authors: Mihai A. Macovei,
- Abstract summary: We show the quantum nature of the spontaneously scattered light field in this process for weaker thermal baths.
The collectively emitted photon intensity suppresses or enhances depending on the environmental thermal baths intensities.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The quantum dynamics of a dense and dipole-dipole coupled ensemble of two-level emitters interacting via their environmental thermostat is investigated. The static dipole-dipole interaction strengths are being considered strong enough but smaller than the transition frequency. Therefore, the established thermal equilibrium of ensemble's quantum dynamics is described with respect to the dipole-dipole coupling strengths. We have demonstrated the quantum nature of the spontaneously scattered light field in this process for weaker thermal baths as well as non-negligible dipole-dipole couplings compared to the emitter's transition frequency. Furthermore, the collectively emitted photon intensity suppresses or enhances depending on the environmental thermal baths intensities.
Related papers
- Analysis of exciton-polariton condensation under different pumping schemes for 1D and 2D microcavities including the effect of strong correlation between polaritons [0.0]
We simulate exciton-polariton condensation using the finite-difference and 4th order Runge-Kutta methods.
This is done for coherent, near-resonant pumping as well as homogeneous, incoherent, non-resonant pumping.
arXiv Detail & Related papers (2025-01-06T12:05:01Z) - Collective Dissipation of Oscillator Dipoles Strongly Coupled to 1-D Electromagnetic Reservoirs [0.0]
We study the collective dissipative dynamics of dipoles modeled as harmonic oscillators coupled to 1-D electromagnetic reservoirs.
At weak coupling, apart from recovering the dynamics expected from a Markovian Lindblad master equation, we also obtain non-Markovian effects for spatially separated two-level emitters.
arXiv Detail & Related papers (2024-11-03T19:22:58Z) - Quantum emitter interacting with a dispersive dielectric object: a model based on the modified Langevin noise formalism [0.0]
We show that the emitter couples to two distinct bosonic baths: a medium-assisted bath and a scattering-assisted bath.
We identify the conditions under which the electromagnetic environment composed of these two baths can be effectively replaced by a single bosonic bath.
In particular, when the initial states of the medium- and scattering-assisted baths are thermal states with the same temperature, we find that a single bosonic bath with a spectral density equal to the sum of the medium-assisted and scattering-assisted spectral densities is equivalent to the original electromagnetic environment.
arXiv Detail & Related papers (2024-10-14T17:11:36Z) - Propagation of light in cold emitter ensembles with quantum position
correlations due to static long-range dipolar interactions [0.0]
We analyze the scattering of light from dipolar emitters whose disordered positions exhibit correlations induced by static, long-range dipole-dipole interactions.
The quantum-mechanical position correlations are calculated for zero temperature bosonic atoms or molecules using variational and diffusion quantum Monte Carlo methods.
For stationary atoms in dense ensembles in the limit of low light intensity, the simulations yield solutions for the optical responses to all orders of position correlation functions that involve electronic ground and excited states.
arXiv Detail & Related papers (2023-10-24T20:02:40Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Collective flow of fermionic impurities immersed in a Bose-Einstein Condensate [34.82692226532414]
We study the collective oscillations of spin-polarized fermionic impurities immersed in a Bose-Einstein condensate.
For strong interactions, the Fermi gas perfectly mimics the superfluid hydrodynamic modes of the condensate.
With an increasing number of bosonic thermal excitations, the dynamics of the impurities cross over from the collisionless to the hydrodynamic regime.
arXiv Detail & Related papers (2023-04-16T00:58:05Z) - Quantum Fluctuations and Coherence of a Molecular Polariton Condensate [0.5801044612920816]
A full quantum theory is developed for an exciton polariton condensate.
The polariton nonlinearity causing fast relaxation correlated with the pump so as to yield the condensation at threshold.
The results signify the role of dark states for polariton fluctuations, and lead to a nonclassical counting statistics of emitted photons.
arXiv Detail & Related papers (2022-04-28T14:27:05Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Microwave multiphoton conversion via coherently driven permanent dipole
systems [68.8204255655161]
We investigate a leaking single-mode quantized cavity field coupled with a resonantly driven two-level system possessing permanent dipoles.
The frequencies of the interacting subsystems are being considered very different, e.g., microwave ranges for the cavity and optical domains for the frequency of the two-level emitter, respectively.
arXiv Detail & Related papers (2020-08-12T16:20:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.