論文の概要: Poisoning Attacks on Federated Learning for Autonomous Driving
- arxiv url: http://arxiv.org/abs/2405.01073v1
- Date: Thu, 2 May 2024 08:06:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 17:23:40.710846
- Title: Poisoning Attacks on Federated Learning for Autonomous Driving
- Title(参考訳): 自動運転車のフェデレーション学習に対する攻撃
- Authors: Sonakshi Garg, Hugo Jönsson, Gustav Kalander, Axel Nilsson, Bhhaanu Pirange, Viktor Valadi, Johan Östman,
- Abstract要約: FLStealth と Off-Track Attack (OTA) という,自律運転における回帰作業に適した2つの新しい中毒攻撃を導入する。
OTAは、特定のトリガに晒された場合のグローバルモデルの振る舞いを変えることを目的とした攻撃である。
特に,FLStealthは,攻撃対象外である5種類の攻撃に対して,サーバが使用した防御策を回避し,最も成功していることを示す。
- 参考スコア(独自算出の注目度): 2.372971341944509
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) is a decentralized learning paradigm, enabling parties to collaboratively train models while keeping their data confidential. Within autonomous driving, it brings the potential of reducing data storage costs, reducing bandwidth requirements, and to accelerate the learning. FL is, however, susceptible to poisoning attacks. In this paper, we introduce two novel poisoning attacks on FL tailored to regression tasks within autonomous driving: FLStealth and Off-Track Attack (OTA). FLStealth, an untargeted attack, aims at providing model updates that deteriorate the global model performance while appearing benign. OTA, on the other hand, is a targeted attack with the objective to change the global model's behavior when exposed to a certain trigger. We demonstrate the effectiveness of our attacks by conducting comprehensive experiments pertaining to the task of vehicle trajectory prediction. In particular, we show that, among five different untargeted attacks, FLStealth is the most successful at bypassing the considered defenses employed by the server. For OTA, we demonstrate the inability of common defense strategies to mitigate the attack, highlighting the critical need for new defensive mechanisms against targeted attacks within FL for autonomous driving.
- Abstract(参考訳): フェデレートラーニング(FL)は分散学習パラダイムであり、データを秘密にしながらモデルを協調的にトレーニングすることを可能にする。
自動運転では、データストレージコストを削減し、帯域幅の要件を減らし、学習を加速する可能性がある。
しかし、FLは毒による攻撃を受けやすい。
本稿では,FLStealth と Off-Track Attack (OTA) という,自律走行における回帰作業に適したFLに対する2つの新しい中毒攻撃を紹介する。
未ターゲットの攻撃であるFLStealthは、良心を見せながらグローバルモデルのパフォーマンスを低下させるモデルアップデートの提供を目標としている。
一方、OTAは特定のトリガに晒された場合のグローバルモデルの振る舞いを変えることを目的とした攻撃である。
本研究は,車両軌道予測の課題に関する総合的な実験を行うことにより,攻撃の有効性を実証する。
特に,FLStealthは,攻撃対象外である5種類の攻撃に対して,サーバが使用した防御策を回避し,最も成功していることを示す。
OTAでは、攻撃を緩和するための共通防衛戦略が欠如していることを示し、自動運転のためのFL内の標的攻撃に対する新たな防御機構の必要性を強調した。
関連論文リスト
- Celtibero: Robust Layered Aggregation for Federated Learning [0.0]
Celtiberoは, 対向操作に対する強靭性を高めるため, 層状アグリゲーションを統合した新しい防御機構である。
セルティベロは、標的外および標的標的の毒殺攻撃において、最小攻撃成功率(ASR)を維持しつつ、常に高い主タスク精度(MTA)を達成することを実証した。
論文 参考訳(メタデータ) (2024-08-26T12:54:00Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - Data-Agnostic Model Poisoning against Federated Learning: A Graph
Autoencoder Approach [65.2993866461477]
本稿では,フェデレートラーニング(FL)に対するデータに依存しないモデル中毒攻撃を提案する。
この攻撃はFLトレーニングデータの知識を必要とせず、有効性と検出不能の両方を達成する。
実験により、FLの精度は提案した攻撃の下で徐々に低下し、既存の防御機構では検出できないことが示された。
論文 参考訳(メタデータ) (2023-11-30T12:19:10Z) - SPFL: A Self-purified Federated Learning Method Against Poisoning Attacks [12.580891810557482]
フェデレートラーニング(FL)は、プライバシを保存する分散トレーニングデータを引き出す上で魅力的なものだ。
本研究では, ベニグアのクライアントが, 局所的に精製されたモデルの信頼性のある歴史的特徴を活用できる自己浄化FL(SPFL)手法を提案する。
実験により,SPFLは様々な毒殺攻撃に対して,最先端のFL防御に優れることを示した。
論文 参考訳(メタデータ) (2023-09-19T13:31:33Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
軌道予測は、自動運転車が正しく安全な運転行動を計画するために不可欠である。
我々は,現実的な対向軌道を生成するために,最適化に基づく対向攻撃フレームワークを考案する。
私たちの攻撃は、AVが道路を走り去るか、シミュレーション中に他の車両に衝突する可能性がある。
論文 参考訳(メタデータ) (2022-09-19T03:34:59Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
ネットワーク分類器に対するブラックボックス攻撃について検討する。
我々は、アタッカー・ディフェンダーの固定点がそれ自体、複雑な位相遷移を持つ一般サムゲームであると主張する。
攻撃防御力学の研究には連続的な学習手法が必要であることを示す。
論文 参考訳(メタデータ) (2021-11-23T23:42:16Z) - FL-WBC: Enhancing Robustness against Model Poisoning Attacks in
Federated Learning from a Client Perspective [35.10520095377653]
Federated Learning(FL)は,中央サーバとエッジデバイス間の反復的な通信を通じてグローバルモデルをトレーニングする,人気のある分散学習フレームワークである。
近年の研究では、FLはモデル中毒攻撃に弱いことが示されている。
我々は、モデル中毒攻撃を軽減できるクライアントベースの防御システム、White Blood Cell for Federated Learning (FL-WBC)を提案する。
論文 参考訳(メタデータ) (2021-10-26T17:13:35Z) - Adversarial defense for automatic speaker verification by cascaded
self-supervised learning models [101.42920161993455]
ますます悪意のある攻撃者は、自動話者検証(ASV)システムで敵攻撃を仕掛けようとする。
本稿では,逐次的自己教師付き学習モデルに基づく標準的かつ攻撃非依存な手法を提案する。
実験により, 本手法は効果的な防御性能を実現し, 敵攻撃に対抗できることを示した。
論文 参考訳(メタデータ) (2021-02-14T01:56:43Z) - Untargeted Poisoning Attack Detection in Federated Learning via Behavior
Attestation [7.979659145328856]
Federated Learning(FL)は、機械学習(ML)におけるパラダイムであり、データプライバシ、セキュリティ、アクセス権、異種情報問題へのアクセスを扱う。
その利点にもかかわらず、flベースのml技術によるサイバー攻撃は利益を損なう可能性がある。
悪意のあるワーカを検出するために,状態永続化を通じて個々のノードのトレーニングを監視する防御機構であるattestedflを提案する。
論文 参考訳(メタデータ) (2021-01-24T20:52:55Z) - Dynamic backdoor attacks against federated learning [0.5482532589225553]
Federated Learning(FL)は、データプライバシとセキュリティを損なうことなく、何百万人もの参加者が協力してモデルをトレーニングできる、新しい機械学習フレームワークである。
本稿では、FL設定下での動的バックドア攻撃に着目し、敵の目標は、ターゲットタスクにおけるモデルの性能を低下させることである。
我々の知る限りでは、FL設定下での動的バックドア攻撃の研究に焦点を当てた最初の論文である。
論文 参考訳(メタデータ) (2020-11-15T01:32:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。