Latent Fingerprint Matching via Dense Minutia Descriptor
- URL: http://arxiv.org/abs/2405.01199v2
- Date: Fri, 5 Jul 2024 07:34:51 GMT
- Title: Latent Fingerprint Matching via Dense Minutia Descriptor
- Authors: Zhiyu Pan, Yongjie Duan, Xiongjun Guan, Jianjiang Feng, Jie Zhou,
- Abstract summary: We propose a deep-learning based dense minutia descriptor (DMD) for latent fingerprint matching.
A DMD is obtained by extracting the fingerprint patch aligned by its central minutia, capturing detailed minutia information and texture information.
Our descriptor achieves state-of-the-art performance on several latent fingerprint datasets.
- Score: 32.21219375759034
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Latent fingerprint matching is a daunting task, primarily due to the poor quality of latent fingerprints. In this study, we propose a deep-learning based dense minutia descriptor (DMD) for latent fingerprint matching. A DMD is obtained by extracting the fingerprint patch aligned by its central minutia, capturing detailed minutia information and texture information. Our dense descriptor takes the form of a three-dimensional representation, with two dimensions associated with the original image plane and the other dimension representing the abstract features. Additionally, the extraction process outputs the fingerprint segmentation map, ensuring that the descriptor is only valid in the foreground region. The matching between two descriptors occurs in their overlapping regions, with a score normalization strategy to reduce the impact brought by the differences outside the valid area. Our descriptor achieves state-of-the-art performance on several latent fingerprint datasets. Overall, our DMD is more representative and interpretable compared to previous methods.
Related papers
- Fixed-length Dense Descriptor for Efficient Fingerprint Matching [33.808749518785]
We propose a three-dimensional representation called Fixed-length Dense Descriptor (FDD) for efficient fingerprint matching.
FDD features great spatial properties, enabling it to capture the spatial relationships of the original fingerprints.
Our experiments on various fingerprint datasets reveal that FDD outperforms other fixed-length descriptors.
arXiv Detail & Related papers (2023-11-30T14:15:39Z) - Benchmarking fixed-length Fingerprint Representations across different
Embedding Sizes and Sensor Types [13.715060479044167]
Deep neural networks have been proposed to extract fixed-length embeddings from fingerprints.
We study the impact in terms of recognition performance of the fingerprint textural information for two sensor types.
arXiv Detail & Related papers (2023-07-17T16:30:44Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Advancing 3D finger knuckle recognition via deep feature learning [51.871256510747465]
Contactless 3D finger knuckle patterns have emerged as an effective biometric identifier due to its discriminativeness, visibility from a distance, and convenience.
Recent research has developed a deep feature collaboration network which simultaneously incorporates intermediate features from deep neural networks with multiple scales.
This paper advances this approach by investigating the possibility of learning a discriminative feature vector with the least possible dimension for representing 3D finger knuckle images.
arXiv Detail & Related papers (2023-01-07T20:55:16Z) - Progressively Dual Prior Guided Few-shot Semantic Segmentation [57.37506990980975]
Few-shot semantic segmentation task aims at performing segmentation in query images with a few annotated support samples.
We propose a progressively dual prior guided few-shot semantic segmentation network.
arXiv Detail & Related papers (2022-11-20T16:19:47Z) - FIGO: Enhanced Fingerprint Identification Approach Using GAN and One
Shot Learning Techniques [0.0]
We propose a Fingerprint Identification approach based on Generative adversarial network and One-shot learning techniques.
First, we propose a Pix2Pix model to transform low-quality fingerprint images to a higher level of fingerprint images pixel by pixel directly in the fingerprint enhancement tier.
Second, we construct a fully automated fingerprint feature extraction model using a one-shot learning approach to differentiate each fingerprint from the others in the fingerprint identification process.
arXiv Detail & Related papers (2022-08-11T02:45:42Z) - Pair-Relationship Modeling for Latent Fingerprint Recognition [25.435974669629374]
We propose a new scheme that can model the pair-relationship of two fingerprints directly as the similarity feature for recognition.
Experimental results on two databases show that the proposed method outperforms the state of the art.
arXiv Detail & Related papers (2022-07-02T11:31:31Z) - Residual Moment Loss for Medical Image Segmentation [56.72261489147506]
Location information is proven to benefit the deep learning models on capturing the manifold structure of target objects.
Most existing methods encode the location information in an implicit way, for the network to learn.
We propose a novel loss function, namely residual moment (RM) loss, to explicitly embed the location information of segmentation targets.
arXiv Detail & Related papers (2021-06-27T09:31:49Z) - Sparse Auxiliary Networks for Unified Monocular Depth Prediction and
Completion [56.85837052421469]
Estimating scene geometry from data obtained with cost-effective sensors is key for robots and self-driving cars.
In this paper, we study the problem of predicting dense depth from a single RGB image with optional sparse measurements from low-cost active depth sensors.
We introduce Sparse Networks (SANs), a new module enabling monodepth networks to perform both the tasks of depth prediction and completion.
arXiv Detail & Related papers (2021-03-30T21:22:26Z) - Latent Fingerprint Registration via Matching Densely Sampled Points [100.53031290339483]
Existing latent fingerprint registration approaches are mainly based on establishing correspondences between minutiae.
We propose a non-minutia latent fingerprint registration method which estimates the spatial transformation between a pair of fingerprints.
The proposed method achieves the state-of-the-art registration performance, especially under challenging conditions.
arXiv Detail & Related papers (2020-05-12T15:51:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.