論文の概要: Quantifying Spatial Domain Explanations in BCI using Earth Mover's Distance
- arxiv url: http://arxiv.org/abs/2405.01277v1
- Date: Thu, 2 May 2024 13:35:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 16:34:40.890802
- Title: Quantifying Spatial Domain Explanations in BCI using Earth Mover's Distance
- Title(参考訳): 地球モーバー距離を用いたBCIにおける空間領域説明の定量化
- Authors: Param Rajpura, Hubert Cecotti, Yogesh Kumar Meena,
- Abstract要約: BCIは、人間とコンピュータの独特なコミュニケーションを促進し、障害のある個人に利益をもたらす。
BCIのパフォーマンスを評価し、説明することが不可欠で、潜在的ユーザに対して、期待通り動作しない場合にフラストレーションを避けるための明確な説明を提供する。
- 参考スコア(独自算出の注目度): 6.038190786160174
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Brain-computer interface (BCI) systems facilitate unique communication between humans and computers, benefiting severely disabled individuals. Despite decades of research, BCIs are not fully integrated into clinical and commercial settings. It's crucial to assess and explain BCI performance, offering clear explanations for potential users to avoid frustration when it doesn't work as expected. This work investigates the efficacy of different deep learning and Riemannian geometry-based classification models in the context of motor imagery (MI) based BCI using electroencephalography (EEG). We then propose an optimal transport theory-based approach using earth mover's distance (EMD) to quantify the comparison of the feature relevance map with the domain knowledge of neuroscience. For this, we utilized explainable AI (XAI) techniques for generating feature relevance in the spatial domain to identify important channels for model outcomes. Three state-of-the-art models are implemented - 1) Riemannian geometry-based classifier, 2) EEGNet, and 3) EEG Conformer, and the observed trend in the model's accuracy across different architectures on the dataset correlates with the proposed feature relevance metrics. The models with diverse architectures perform significantly better when trained on channels relevant to motor imagery than data-driven channel selection. This work focuses attention on the necessity for interpretability and incorporating metrics beyond accuracy, underscores the value of combining domain knowledge and quantifying model interpretations with data-driven approaches in creating reliable and robust Brain-Computer Interfaces (BCIs).
- Abstract(参考訳): 脳-コンピュータインターフェース(BCI)システムは、人間とコンピュータの間のユニークなコミュニケーションを促進し、障害のある個人に利益をもたらす。
何十年にもわたっての研究にもかかわらず、BCIは臨床および商業的な環境に完全には統合されていない。
BCIのパフォーマンスを評価し、説明することが不可欠で、潜在的ユーザに対して、期待通り動作しない場合にフラストレーションを避けるための明確な説明を提供する。
本研究では,脳波(EEG)を用いた運動画像(MI)に基づくBCIにおいて,異なる深層学習とリーマン幾何学に基づく分類モデルの有効性について検討した。
そこで我々は,地球移動器距離(EMD)を用いた最適輸送理論に基づくアプローチを提案し,特徴関連マップと神経科学の領域知識の比較を定量化する。
そこで我々は、空間領域における特徴関連性を生成するための説明可能なAI(XAI)技術を用いて、モデル結果の重要なチャネルを同定した。
3つの最先端モデルが実装されている - 1)リーマン幾何学に基づく分類器。
2)EEGNet,および
3)EEGコンフォーマー,およびデータセット上の異なるアーキテクチャにわたるモデルの精度の観測傾向は,提案した特徴関連指標と相関する。
多様なアーキテクチャを持つモデルは、データ駆動のチャネル選択よりも運動画像に関連するチャネルで訓練すると、大幅に向上する。
この研究は、信頼性と堅牢なBrain-Computer Interface(BCI)を作成する上で、ドメイン知識とモデル解釈をデータ駆動のアプローチと組み合わせることの価値を強調する。
関連論文リスト
- Benchmark on Drug Target Interaction Modeling from a Structure Perspective [48.60648369785105]
薬物と標的の相互作用の予測は、薬物の発見と設計に不可欠である。
グラフニューラルネットワーク(GNN)やトランスフォーマーに基づく最近の手法は、さまざまなデータセットで例外的なパフォーマンスを示している。
我々は,GNNベースと暗黙的(トランスフォーマーベース)構造学習アルゴリズムを多用することにより,構造の観点からの薬物-標的相互作用モデリングの総合的な調査とベンチマークを行う。
論文 参考訳(メタデータ) (2024-07-04T16:56:59Z) - Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
脳波信号物理を利用した教師なし手法を提案する。
脳波チャンネルをフィールド、ソースフリーなドメイン適応を用いて固定位置にマッピングする。
提案手法は脳-コンピュータインタフェース(BCI)タスクおよび潜在的なバイオマーカー応用におけるロバストな性能を示す。
論文 参考訳(メタデータ) (2024-03-07T16:17:33Z) - Physics Inspired Hybrid Attention for SAR Target Recognition [61.01086031364307]
本稿では,物理にヒントを得たハイブリットアテンション(PIHA)機構と,この問題に対処するためのOFA評価プロトコルを提案する。
PIHAは、物理的情報の高レベルなセマンティクスを活用して、ターゲットの局所的なセマンティクスを認識した特徴群を活性化し、誘導する。
提案手法は,ASCパラメータが同じ12のテストシナリオにおいて,他の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2023-09-27T14:39:41Z) - A Dynamic Domain Adaptation Deep Learning Network for EEG-based Motor
Imagery Classification [1.7465786776629872]
動的ドメイン適応型ディープラーニングネットワーク(DADL-Net)を提案する。
まず、脳波データを3次元幾何学空間にマッピングし、その時空間的特徴を3次元畳み込みモジュールを通して学習する。
精度は70.42%と73.91%で、OpenBMIとBCIC IV 2aデータセットで達成された。
論文 参考訳(メタデータ) (2023-09-21T01:34:00Z) - An intertwined neural network model for EEG classification in
brain-computer interfaces [0.6696153817334769]
脳コンピュータインタフェース(BCI)は、脳とコンピュータまたは外部装置との間の非刺激的直接的、時折双方向通信リンクである。
マルチクラスモータ画像分類における最先端性能を実現するために特別に設計されたディープニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-08-04T09:00:34Z) - EEG-ITNet: An Explainable Inception Temporal Convolutional Network for
Motor Imagery Classification [0.5616884466478884]
我々はEEG-ITNetと呼ばれるエンドツーエンドのディープラーニングアーキテクチャを提案する。
本モデルでは,多チャンネル脳波信号からスペクトル,空間,時間情報を抽出することができる。
EEG-ITNetは、異なるシナリオにおける分類精度を最大5.9%改善する。
論文 参考訳(メタデータ) (2022-04-14T13:18:43Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - CNN-based Approaches For Cross-Subject Classification in Motor Imagery:
From The State-of-The-Art to DynamicNet [0.2936007114555107]
運動画像(MI)ベースの脳-コンピュータインタフェース(BCI)システムは、コミュニケーションと制御の代替手段を提供するためにますます採用されています。
信頼できるBCIシステムを得るには、脳信号からMIを正確に分類することが不可欠です。
ディープラーニングアプローチは、標準的な機械学習技術の有効な代替手段として現れ始めている。
論文 参考訳(メタデータ) (2021-05-17T14:57:13Z) - Emotional EEG Classification using Connectivity Features and
Convolutional Neural Networks [81.74442855155843]
CNNと脳のつながりを利用した新しい分類システムを導入し,その効果を感情映像分類により検証する。
対象映像の感情的特性に関連する脳接続の集中度は分類性能と相関する。
論文 参考訳(メタデータ) (2021-01-18T13:28:08Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Few-Shot Relation Learning with Attention for EEG-based Motor Imagery
Classification [11.873435088539459]
脳波(EEG)信号に基づく脳-コンピュータインタフェース(BCI)が注目されている。
運動画像(MI)データは、リハビリテーションや自律運転のシナリオに使用することができる。
脳波に基づくBCIシステムにはMI信号の分類が不可欠である。
論文 参考訳(メタデータ) (2020-03-03T02:34:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。