論文の概要: Dynamic Online Ensembles of Basis Expansions
- arxiv url: http://arxiv.org/abs/2405.01365v1
- Date: Thu, 2 May 2024 15:09:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 16:05:24.823104
- Title: Dynamic Online Ensembles of Basis Expansions
- Title(参考訳): 基底展開の動的オンラインアンサンブル
- Authors: Daniel Waxman, Petar M. Djurić,
- Abstract要約: 動的モデルのスケーラブルでオンラインなアンサンブルを実現するために,ランダムな特徴近似を用いる方法を示す。
静的モデルと動的モデルを融合する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Practical Bayesian learning often requires (1) online inference, (2) dynamic models, and (3) ensembling over multiple different models. Recent advances have shown how to use random feature approximations to achieve scalable, online ensembling of Gaussian processes with desirable theoretical properties and fruitful applications. One key to these methods' success is the inclusion of a random walk on the model parameters, which makes models dynamic. We show that these methods can be generalized easily to any basis expansion model and that using alternative basis expansions, such as Hilbert space Gaussian processes, often results in better performance. To simplify the process of choosing a specific basis expansion, our method's generality also allows the ensembling of several entirely different models, for example, a Gaussian process and polynomial regression. Finally, we propose a novel method to ensemble static and dynamic models together.
- Abstract(参考訳): 実践的ベイズ学習は、(1)オンライン推論、(2)動的モデル、(3)複数の異なるモデルに対するアンサンブルを必要とすることが多い。
最近の進歩は、ガウス過程のスケーラブルでオンラインなアンサンブルを実現するためにランダムな特徴近似を用いて、望ましい理論的特性と実りある応用を実現する方法を示している。
これらのメソッドの成功の鍵の1つは、モデルパラメータのランダムウォークを含めることであり、モデルが動的になる。
これらの手法が任意の基底展開モデルに容易に一般化できることを示し、ヒルベルト空間ガウス過程のような代替基底展開を用いることで、しばしばより良い性能が得られることを示す。
特定の基底展開を選択する過程を単純化するために、本手法の一般性は、ガウス過程や多項式回帰など、いくつかの全く異なるモデルのアンサンブルを可能にする。
最後に,静的モデルと動的モデルを組み合わせる新しい手法を提案する。
関連論文リスト
- Learnable & Interpretable Model Combination in Dynamic Systems Modeling [0.0]
我々は、通常、どのモデルが組み合わされるかについて議論し、様々な混合方程式に基づくモデルを表現することができるモデルインターフェースを提案する。
本稿では,2つの組み合わせモデル間の汎用的な接続を,容易に解釈可能な方法で記述できる新しいワイルドカードトポロジーを提案する。
本稿では、2つのモデル間の異なる接続トポロジを学習し、解釈し、比較する。
論文 参考訳(メタデータ) (2024-06-12T11:17:11Z) - Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
科学と工学において、私たちはしばしば興味のある変数の正確な予測のために設計されたモデルで作業します。
これらのモデルが現実の近似であることを認識し、複数のモデルを同じデータに適用し、結果を統合することが望ましい。
論文 参考訳(メタデータ) (2024-03-03T04:21:21Z) - Multi-Response Heteroscedastic Gaussian Process Models and Their
Inference [1.52292571922932]
本稿ではヘテロセダスティック共分散関数のモデリングのための新しいフレームワークを提案する。
後部モデルに近似し, 後部予測モデルを容易にするために, 変分推論を用いる。
提案するフレームワークは,幅広いアプリケーションに対して,堅牢で汎用的なツールを提供する。
論文 参考訳(メタデータ) (2023-08-29T15:06:47Z) - Predicting Ordinary Differential Equations with Transformers [65.07437364102931]
単一溶液軌道の不規則サンプリングおよび雑音観測から,スカラー常微分方程式(ODE)を記号形式で復元するトランスフォーマーに基づくシーケンス・ツー・シーケンス・モデルを開発した。
提案手法は, 1回に一度, ODE の大規模な事前訓練を行った後, モデルのいくつかの前方通過において, 新たな観測解の法則を推測することができる。
論文 参考訳(メタデータ) (2023-07-24T08:46:12Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
プロセスを記述するのに必要なパラメータの最小セットを決定するために、教師なしの機械学習アプローチを導入する。
我々の手法はプロセスを記述する未知のパラメータの自律的な発見を可能にする。
論文 参考訳(メタデータ) (2023-07-21T14:25:06Z) - A Class of Two-Timescale Stochastic EM Algorithms for Nonconvex Latent
Variable Models [21.13011760066456]
expectation-Maximization (EM)アルゴリズムは、変数モデルを学習するための一般的な選択肢である。
本稿では,Two-Time Methodsと呼ばれる手法の一般クラスを提案する。
論文 参考訳(メタデータ) (2022-03-18T22:46:34Z) - Gaussian Processes and Statistical Decision-making in Non-Euclidean
Spaces [96.53463532832939]
我々はガウス過程の適用性を高める技術を開発した。
この観点から構築した効率的な近似を幅広く導入する。
非ユークリッド空間上のガウス過程モデルの集合を開発する。
論文 参考訳(メタデータ) (2022-02-22T01:42:57Z) - Conditional Generative Modeling via Learning the Latent Space [54.620761775441046]
マルチモーダル空間における条件生成のための新しい枠組みを提案する。
潜在変数を使って一般化可能な学習パターンをモデル化する。
推論では、潜伏変数は複数の出力モードに対応する最適解を見つけるために最適化される。
論文 参考訳(メタデータ) (2020-10-07T03:11:34Z) - Modeling Continuous Stochastic Processes with Dynamic Normalizing Flows [40.9137348900942]
ウィナー過程の微分変形によって駆動される新しいタイプの流れを提案する。
その結果,観測可能なプロセスが基本プロセスの魅力的な特性の多くを継承するリッチ時系列モデルが得られた。
論文 参考訳(メタデータ) (2020-02-24T20:13:43Z) - Learning Gaussian Graphical Models via Multiplicative Weights [54.252053139374205]
乗算重み更新法に基づいて,Klivans と Meka のアルゴリズムを適用した。
アルゴリズムは、文献の他のものと質的に類似したサンプル複雑性境界を楽しみます。
ランタイムが低い$O(mp2)$で、$m$サンプルと$p$ノードの場合には、簡単にオンライン形式で実装できる。
論文 参考訳(メタデータ) (2020-02-20T10:50:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。