Goal-conditioned reinforcement learning for ultrasound navigation guidance
- URL: http://arxiv.org/abs/2405.01409v3
- Date: Thu, 1 Aug 2024 08:58:40 GMT
- Title: Goal-conditioned reinforcement learning for ultrasound navigation guidance
- Authors: Abdoul Aziz Amadou, Vivek Singh, Florin C. Ghesu, Young-Ho Kim, Laura Stanciulescu, Harshitha P. Sai, Puneet Sharma, Alistair Young, Ronak Rajani, Kawal Rhode,
- Abstract summary: We propose a novel ultrasound navigation assistance method based on contrastive learning as goal-conditioned reinforcement learning (G)
We augment the previous framework using a novel contrastive patient method (CPB) and a data-augmented contrastive loss.
Our method was developed with a large dataset of 789 patients and obtained an average error of 6.56 mm in position and 9.36 degrees in angle.
- Score: 4.648318344224063
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Transesophageal echocardiography (TEE) plays a pivotal role in cardiology for diagnostic and interventional procedures. However, using it effectively requires extensive training due to the intricate nature of image acquisition and interpretation. To enhance the efficiency of novice sonographers and reduce variability in scan acquisitions, we propose a novel ultrasound (US) navigation assistance method based on contrastive learning as goal-conditioned reinforcement learning (GCRL). We augment the previous framework using a novel contrastive patient batching method (CPB) and a data-augmented contrastive loss, both of which we demonstrate are essential to ensure generalization to anatomical variations across patients. The proposed framework enables navigation to both standard diagnostic as well as intricate interventional views with a single model. Our method was developed with a large dataset of 789 patients and obtained an average error of 6.56 mm in position and 9.36 degrees in angle on a testing dataset of 140 patients, which is competitive or superior to models trained on individual views. Furthermore, we quantitatively validate our method's ability to navigate to interventional views such as the Left Atrial Appendage (LAA) view used in LAA closure. Our approach holds promise in providing valuable guidance during transesophageal ultrasound examinations, contributing to the advancement of skill acquisition for cardiac ultrasound practitioners.
Related papers
- Sequence-aware Pre-training for Echocardiography Probe Guidance [66.35766658717205]
Cardiac ultrasound faces two major challenges: (1) the inherently complex structure of the heart, and (2) significant individual variations.
Previous works have only learned the population-averaged 2D and 3D structures of the heart rather than personalized cardiac structural features.
We propose a sequence-aware self-supervised pre-training method to learn personalized 2D and 3D cardiac structural features.
arXiv Detail & Related papers (2024-08-27T12:55:54Z) - Hybrid Deep Learning-Based for Enhanced Occlusion Segmentation in PICU Patient Monitoring [0.0]
We propose a hybrid approach to segment common occlusions encountered in remote monitoring applications within PICUs.
Our approach centers on creating a deep-learning pipeline for limited training data scenarios.
The proposed framework yields an overall classification performance with 92.5% accuracy, 93.8% recall, 90.3% precision, and 92.0% F1-score.
arXiv Detail & Related papers (2024-07-18T09:37:55Z) - Self-Supervised Learning for Interventional Image Analytics: Towards Robust Device Trackers [6.262161803642583]
We propose a novel approach to learn procedural features from a very large data cohort of over 16 million interventional X-ray frames.
Our approach is based on a masked image modeling technique that leverages frame-based reconstruction to learn fine inter-frame temporal correspondences.
Experiments show that our method achieves 66.31% reduction in maximum tracking error against reference solutions.
arXiv Detail & Related papers (2024-05-02T10:18:22Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - SSASS: Semi-Supervised Approach for Stenosis Segmentation [9.767759441883008]
The complexity of coronary artery structures combined with the inherent noise in X-ray images poses a considerable challenge to this task.
We introduce a semi-supervised approach for cardiovascular stenosis segmentation.
Our approach demonstrated an exceptional performance in the Automatic Region-based Coronary Artery Disease diagnostics.
arXiv Detail & Related papers (2023-11-17T02:01:19Z) - Interpretable and intervenable ultrasonography-based machine learning
models for pediatric appendicitis [8.083060080133842]
Appendicitis is among the most frequent reasons for pediatric abdominal surgeries.
Previous decision support systems for appendicitis have focused on clinical, laboratory, scoring, and computed tomography data.
We present interpretable machine learning models for predicting the diagnosis, management and severity of suspected appendicitis using ultrasound images.
arXiv Detail & Related papers (2023-02-28T10:08:11Z) - Self-supervised contrastive learning of echocardiogram videos enables
label-efficient cardiac disease diagnosis [48.64462717254158]
We developed a self-supervised contrastive learning approach, EchoCLR, to catered to echocardiogram videos.
When fine-tuned on small portions of labeled data, EchoCLR pretraining significantly improved classification performance for left ventricular hypertrophy (LVH) and aortic stenosis (AS)
EchoCLR is unique in its ability to learn representations of medical videos and demonstrates that SSL can enable label-efficient disease classification from small, labeled datasets.
arXiv Detail & Related papers (2022-07-23T19:17:26Z) - Systematic Clinical Evaluation of A Deep Learning Method for Medical
Image Segmentation: Radiosurgery Application [48.89674088331313]
We systematically evaluate a Deep Learning (DL) method in a 3D medical image segmentation task.
Our method is integrated into the radiosurgery treatment process and directly impacts the clinical workflow.
arXiv Detail & Related papers (2021-08-21T16:15:40Z) - Automated Deep Learning Analysis of Angiography Video Sequences for
Coronary Artery Disease [4.233200689119682]
The evaluation of obstructions (stenosis) in coronary arteries is currently done by a physician's visual assessment of coronary angiography video sequences.
We report an automated analysis pipeline based on deep learning to rapidly and objectively assess coronary angiograms.
We combined powerful deep learning approaches such as ResNet and U-Net with traditional image processing and geometrical analysis.
arXiv Detail & Related papers (2021-01-29T10:23:49Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.