論文の概要: IDPFilter: Mitigating Interdependent Privacy Issues in Third-Party Apps
- arxiv url: http://arxiv.org/abs/2405.01411v1
- Date: Thu, 2 May 2024 16:02:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 15:55:39.774003
- Title: IDPFilter: Mitigating Interdependent Privacy Issues in Third-Party Apps
- Title(参考訳): IDPFilter: サードパーティアプリにおける依存関係のプライバシ問題を軽減する
- Authors: Shuaishuai Liu, Gergely Biczók,
- Abstract要約: サードパーティアプリがIDP(Interdependent Privacy)への懸念を強めている
本報告では,サードパーティアプリのIDP問題に関して,これまで未検討であった問題を包括的に調査する。
IDPFilterは,アプリケーションプロバイダが情報収集を最小化するためのプラットフォームに依存しないAPIである。
- 参考スコア(独自算出の注目度): 0.30693357740321775
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Third-party applications have become an essential part of today's online ecosystem, enhancing the functionality of popular platforms. However, the intensive data exchange underlying their proliferation has increased concerns about interdependent privacy (IDP). This paper provides a comprehensive investigation into the previously underinvestigated IDP issues of third-party apps. Specifically, first, we analyze the permission structure of multiple app platforms, identifying permissions that have the potential to cause interdependent privacy issues by enabling a user to share someone else's personal data with an app. Second, we collect datasets and characterize the extent to which existing apps request these permissions, revealing the relationship between characteristics such as the respective app platform, the app's type, and the number of interdependent privacy-related permissions it requests. Third, we analyze the various reasons IDP is neglected by both data protection regulations and app platforms and then devise principles that should be followed when designing a mitigation solution. Finally, based on these principles and satisfying clearly defined objectives, we propose IDPFilter, a platform-agnostic API that enables application providers to minimize collateral information collection by filtering out data collected from their users but implicating others as data subjects. We implement a proof-of-concept prototype, IDPTextFilter, that implements the filtering logic on textual data, and provide its initial performance evaluation with regard to privacy, accuracy, and efficiency.
- Abstract(参考訳): サードパーティアプリケーションは、今日のオンラインエコシステムの重要な部分となり、人気のあるプラットフォームの機能を強化しています。
しかし、その増殖の根底にあるデータ交換は、相互依存プライバシー(IDP)に対する懸念を高めている。
本報告では,サードパーティアプリのIDP問題に関して,これまで未検討であった問題を包括的に調査する。
具体的には、まず、複数のアプリプラットフォームのパーミッション構造を分析し、ユーザが他の誰かの個人情報をアプリと共有できるようにすることで、相互依存のプライバシー問題を引き起こす可能性があるパーミッションを特定します。
次に、データセットを収集し、既存のアプリがこれらのパーミッションをリクエストする範囲を特徴付け、各アプリプラットフォーム、アプリのタイプ、リクエストする依存性のプライバシ関連パーミッションの数などの特性の関係を明らかにします。
第三に、IDPがデータ保護規制とアプリプラットフォームの両方で無視されているさまざまな理由を分析し、緩和ソリューションを設計する際に従うべき原則を考案する。
最後に、これらの原則に基づいて明確に定義された目的を満足するIDPFilterを提案する。これは、アプリケーションプロバイダが、ユーザから収集したデータをフィルタリングして、他者をデータ対象として含めることによって、余分な情報収集を最小化できるプラットフォームに依存しないAPIである。
我々は,テキストデータにフィルタリングロジックを実装した概念実証プロトタイプ IDPTextFilter を実装し,プライバシ,精度,効率に関する初期性能評価を行う。
関連論文リスト
- A Large-Scale Privacy Assessment of Android Third-Party SDKs [17.245330733308375]
サードパーティのソフトウェア開発キット(SDK)は、Androidアプリ開発で広く採用されている。
この利便性は、ユーザのプライバシに敏感な情報への不正アクセスに関するかなりの懸念を引き起こす。
当社の研究では,AndroidサードパーティSDK間のユーザプライバシ保護を対象とする分析を行っている。
論文 参考訳(メタデータ) (2024-09-16T15:44:43Z) - Differentially Private Data Release on Graphs: Inefficiencies and Unfairness [48.96399034594329]
本稿では,ネットワーク情報公開の文脈における偏見と不公平性に対する差別的プライバシの影響を特徴づける。
ネットワーク構造が全員に知られているネットワークリリースの問題を考えるが、エッジの重みをプライベートにリリースする必要がある。
我々の研究は、これらのネットワーク化された決定問題におけるプライバシーに起因する偏見と不公平性に関する理論的根拠と実証的な証拠を提供する。
論文 参考訳(メタデータ) (2024-08-08T08:37:37Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
差分プライバシ(DP)は、モデルが特定のプライバシユニットで「ほとんど区別できない」ことを保証することで、有望なソリューションを提供する。
ユーザ間でのプライバシー保護の確保に必要なアプリケーションによって動機づけられたユーザレベルのDPについて検討する。
論文 参考訳(メタデータ) (2024-06-20T13:54:32Z) - User Interaction Data in Apps: Comparing Policy Claims to
Implementations [0.0]
我々は、ポリシークレームとデータ収集手法の整合性を評価するために、静的解析手法を用いて、さまざまなカテゴリにまたがるトップ100アプリを分析した。
我々の調査結果は、データ収集における透明性の欠如と、それに伴う再識別のリスクを強調し、ユーザのプライバシと信頼に関する懸念を高めている。
論文 参考訳(メタデータ) (2023-12-05T12:11:11Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - TeD-SPAD: Temporal Distinctiveness for Self-supervised
Privacy-preservation for video Anomaly Detection [59.04634695294402]
人間の監視のないビデオ異常検出(VAD)は複雑なコンピュータビジョンタスクである。
VADのプライバシー漏洩により、モデルは人々の個人情報に関連する不必要なバイアスを拾い上げ、増幅することができる。
本稿では,視覚的プライベート情報を自己管理的に破壊する,プライバシーに配慮したビデオ異常検出フレームワークTeD-SPADを提案する。
論文 参考訳(メタデータ) (2023-08-21T22:42:55Z) - Tapping into Privacy: A Study of User Preferences and Concerns on
Trigger-Action Platforms [0.0]
モノのインターネット(IoT)デバイスの人気は急速に高まり、インターネットに接続されたデバイスを継続的に監視する人が増えている。
この研究は、IoT(Internet of Things)のコンテキストにおいて、Trigger-Action Platform(TAP)に関連するエンドユーザのプライバシ上の懸念と期待について調査する。
TAPでは、特定のイベントや条件に基づいてアクションをトリガーするルールを作成することで、スマート環境をカスタマイズすることができる。
論文 参考訳(メタデータ) (2023-08-11T14:25:01Z) - How Do Input Attributes Impact the Privacy Loss in Differential Privacy? [55.492422758737575]
DPニューラルネットワークにおけるオブジェクトごとの規範と個人のプライバシ損失との関係について検討する。
プライバシ・ロス・インプット・サセプティビリティ(PLIS)と呼ばれる新しい指標を導入し、被験者のプライバシ・ロスを入力属性に適応させることを可能にした。
論文 参考訳(メタデータ) (2022-11-18T11:39:03Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
エピソード強化学習(RL)のためのプライバシー保護探索ポリシーを設計する。
まず、共同微分プライバシー(JDP)の概念を用いた有意義なプライバシー定式化を提供する。
そこで我々は,強いPACと後悔境界を同時に達成し,JDP保証を享受する,プライベートな楽観主義に基づく学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-09-18T20:18:35Z) - Privacy-Aware Time-Series Data Sharing with Deep Reinforcement Learning [33.42328078385098]
時系列データ共有におけるプライバシーユーティリティトレードオフ(PUT)について検討する。
現時点でのプライバシを保存する方法は、トレースレベルでかなりの量の情報をリークする可能性がある。
我々は、ユーザの真のデータシーケンスの歪んだバージョンを、信頼できない第三者と共有することを検討する。
論文 参考訳(メタデータ) (2020-03-04T18:47:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。