Inflationary complexity of thermal state
- URL: http://arxiv.org/abs/2405.01433v2
- Date: Mon, 6 May 2024 16:02:58 GMT
- Title: Inflationary complexity of thermal state
- Authors: Tao Li, Lei-Hua Liu,
- Abstract summary: We investigate inflationary complexity of the two-mode squeezed state with thermal effect for the single field inflation, modified dispersion relation, and non-trivial sound speed.
Our investigations show the evolution of Krylov complexity will enhance upon some peaks factoring in the thermal effects.
Our derivation for the Krylov complexity and Krylov entropy could nicely recover into the case of closed system.
- Score: 3.0346001106791323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we systematically investigate the inflationary complexity of the two-mode squeezed state with thermal effect for the single field inflation, modified dispersion relation, and non-trivial sound speed with the method of closed system and open system, respectively. Since the various quantum gravitational framework could lead to this kind of modified dispersion relation and non-trivial sound speed, so that our analysis is valid for most inflationary models. $(a)$. The numeric of Krylov complexity in the method of the closed system indicates that the evolution of Krylov complexity highly depends on the squeezed angle parameter once taking the thermal effect into account, which will decay into some very tiny values, but the Krylov complexity will always enhance without thermal effect. $(b)$. The numeric of circuit complexity shows that the evolution is always increasing no matter whether there are thermal effects or not which is independent of the evolution of squeezed angle parameter. $(c)$. By utilizing the method of open system, we first construct the wave function. Our investigations show the evolution of Krylov complexity will enhance upon some peaks factoring in the thermal effects and the Krylov complexity will always increase without thermal effect. $(d)$. We also calculate the Krylov entropy in the method of closed system and open system, which indicates that the hotter the universe is, the more chaotic the universe becomes. Furthermore, our derivation for the Krylov complexity and Krylov entropy could nicely recover into the case of closed system under the weak dissipative approximation, which confirms the validity of construction for the wave function. Finally, our numeric of Lanczos coefficient shows that the non-trivial sound speed has minimal chaos compared to the other two cases.
Related papers
- Krylov complexity of thermal state in early universe [3.0346001106791323]
We perform a detailed study of the Krylov complexity of the thermal state across the entire early universe.
To accurately calculate the Krylov complexity, we purified the thermal state, resulting in a pure state with two modes.
Our findings reveal that inflation behaves as a strong dissipative system, while the radiation-dominated and matter-dominated periods act as weak dissipative systems.
arXiv Detail & Related papers (2024-08-06T16:41:54Z) - KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - Inflationary Krylov complexity [3.0346001106791323]
We investigate the Krylov complexity of curvature perturbation for the modified dispersion relation in inflation.
Our analysis could be applied to the most inflationary models.
arXiv Detail & Related papers (2024-01-17T16:17:51Z) - Krylov complexity as an order parameter for deconfinement phase
transitions at large $N$ [0.0]
Krylov complexity is an order parameter of confinement/deconfinement transitions in large $N$ quantum field theories.
We show that Krylov complexity reflects the confinement/deconfinement phase transitions through the continuity of mass spectrum.
arXiv Detail & Related papers (2024-01-09T07:04:17Z) - Disorder-tunable entanglement at infinite temperature [18.552959588855124]
We build a custom-built superconducting qubit ladder to realize non-thermalizing states with rich entanglement structures.
Despite effectively forming an "infinite" temperature ensemble, these states robustly encode quantum information far from equilibrium.
arXiv Detail & Related papers (2023-12-15T21:30:38Z) - Krylov complexity in quantum field theory, and beyond [44.99833362998488]
We study Krylov complexity in various models of quantum field theory.
We find that the exponential growth of Krylov complexity satisfies the conjectural inequality, which generalizes the Maldacena-Shenker-Stanford bound on chaos.
arXiv Detail & Related papers (2022-12-29T19:00:00Z) - Self-healing of Trotter error in digital adiabatic state preparation [52.77024349608834]
We prove that the first-order Trotterization of a complete adiabatic evolution has a cumulative infidelity that scales as $mathcal O(T-2 delta t2)$ instead of $mathcal O(T2delta t2)$ expected from general Trotter error bounds.
This result suggests a self-healing mechanism and explains why, despite increasing $T$, infidelities for fixed-$delta t$ digitized evolutions still decrease for a wide variety of Hamiltonians.
arXiv Detail & Related papers (2022-09-13T18:05:07Z) - Krylov Complexity in Open Quantum Systems [3.5895926924969404]
We show that Krylov complexity in open systems can be mapped to a non-hermitian tight-binding model in a half-infinite chain.
Our work provides insights for discussing complexity, chaos, and holography for open quantum systems.
arXiv Detail & Related papers (2022-07-27T16:03:41Z) - Cosmological Krylov Complexity [0.0]
We study the Krylov complexity ($K$) from the planar/inflationary patch of the de Sitter space using the two mode squeezed state formalism.
We show that the Krylov complexity ($K$) for this system is equal to average particle numbers suggesting it's relation to the volume.
arXiv Detail & Related papers (2022-03-27T15:36:58Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Improved thermal area law and quasi-linear time algorithm for quantum
Gibbs states [14.567067583556714]
We propose a new thermal area law that holds for generic many-body systems on lattices.
We improve the temperature dependence from the original $mathcalO(beta)$ to $tildemathcalO(beta2/3)$.
We also prove analogous bounds for the R'enyi entanglement of purification and the entanglement of formation.
arXiv Detail & Related papers (2020-07-22T02:55:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.