Krylov complexity of thermal state in early universe
- URL: http://arxiv.org/abs/2408.03293v2
- Date: Mon, 19 Aug 2024 09:13:43 GMT
- Title: Krylov complexity of thermal state in early universe
- Authors: Tao Li, Lei-Hua Liu,
- Abstract summary: We perform a detailed study of the Krylov complexity of the thermal state across the entire early universe.
To accurately calculate the Krylov complexity, we purified the thermal state, resulting in a pure state with two modes.
Our findings reveal that inflation behaves as a strong dissipative system, while the radiation-dominated and matter-dominated periods act as weak dissipative systems.
- Score: 3.0346001106791323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In our work, we perform a detailed study of the Krylov complexity of the thermal state across the entire early universe, encompassing the inflation, radiation-dominated period, and matter-dominated period, which is for the single field inflation. We utilize both the closed system's method and open system's method to achieve this goal. To accurately calculate the Krylov complexity, we purified the thermal state, resulting in a pure state with two modes. Our analysis with both methods indicates that the Krylov complexity will increase during inflation, but will saturate at constant values during the radiation-dominated and matter-dominated periods, where the generation of particles via preheating leads to this evolution. Furthermore, our findings reveal that inflation behaves as a strong dissipative system, while the radiation-dominated and matter-dominated periods act as weak dissipative systems. The chaotic feature during these periods follows a similar trend to the Krylov complexity. This research has the potential to provide new insights into the exploration of Krylov complexity in cosmology.
Related papers
- Geometric interpretation of timelike entanglement entropy [44.99833362998488]
Analytic continuations of holographic entanglement entropy in which the boundary subregion extends along a timelike direction have brought a promise of a novel, time-centric probe of spacetime.
We propose that the bulk carriers of this holographic timelike entanglement entropy are boundary-anchored extremal surfaces probing analytic continuation of holographic spacetimes into complex coordinates.
arXiv Detail & Related papers (2024-08-28T12:36:34Z) - Krylov Complexity as a Probe for Chaos [0.7373617024876725]
We show that the dynamics towards saturation precisely distinguish between chaotic and integrable systems.
For chaotic models, the saturation value of complexity reaches its infinite time average at a finite saturation time.
In integrable models, complexity approaches the infinite time average value from below at a much longer timescale.
arXiv Detail & Related papers (2024-08-19T17:52:42Z) - Spread complexity and quantum chaos for periodically driven spin chains [0.0]
We study the dynamics of spread complexity for quantum maps using the Arnoldi iterative procedure.
We find distinctive behaviour of the Arnoldi coefficients and spread complexity for regular vs. chaotic dynamics.
arXiv Detail & Related papers (2024-05-25T11:17:43Z) - Inflationary complexity of thermal state [3.0346001106791323]
We investigate inflationary complexity of the two-mode squeezed state with thermal effect for the single field inflation, modified dispersion relation, and non-trivial sound speed.
Our investigations show the evolution of Krylov complexity will enhance upon some peaks factoring in the thermal effects.
Our derivation for the Krylov complexity and Krylov entropy could nicely recover into the case of closed system.
arXiv Detail & Related papers (2024-05-02T16:22:59Z) - Inflationary Krylov complexity [3.0346001106791323]
We investigate the Krylov complexity of curvature perturbation for the modified dispersion relation in inflation.
Our analysis could be applied to the most inflationary models.
arXiv Detail & Related papers (2024-01-17T16:17:51Z) - Nonlocality of Deep Thermalization [0.0]
We study the role of topology in governing deep thermalization.
Deep thermalization is achieved exponentially quickly in the presence of either periodic or open boundary conditions.
arXiv Detail & Related papers (2023-05-15T08:32:05Z) - Krylov complexity in quantum field theory, and beyond [44.99833362998488]
We study Krylov complexity in various models of quantum field theory.
We find that the exponential growth of Krylov complexity satisfies the conjectural inequality, which generalizes the Maldacena-Shenker-Stanford bound on chaos.
arXiv Detail & Related papers (2022-12-29T19:00:00Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.