論文の概要: Advancing human-centric AI for robust X-ray analysis through holistic self-supervised learning
- arxiv url: http://arxiv.org/abs/2405.01469v1
- Date: Thu, 2 May 2024 16:59:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 15:45:41.921084
- Title: Advancing human-centric AI for robust X-ray analysis through holistic self-supervised learning
- Title(参考訳): 総合的自己教師型学習による頑健なX線分析のための人間中心型AIの活用
- Authors: Théo Moutakanni, Piotr Bojanowski, Guillaume Chassagnon, Céline Hudelot, Armand Joulin, Yann LeCun, Matthew Muckley, Maxime Oquab, Marie-Pierre Revel, Maria Vakalopoulou,
- Abstract要約: 873kの胸部X線で自己監督によって訓練された大型ビジュアルエンコーダであるRayDinoについて紹介する。
我々はレイディーノと過去の9つの放射線学課題における最先端モデルを比較し、分類と密分化からテキスト生成までについて述べる。
以上の結果から,患者中心型AIがX線の臨床・解釈に有用であることが示唆された。
- 参考スコア(独自算出の注目度): 33.9544297423474
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI Foundation models are gaining traction in various applications, including medical fields like radiology. However, medical foundation models are often tested on limited tasks, leaving their generalisability and biases unexplored. We present RayDINO, a large visual encoder trained by self-supervision on 873k chest X-rays. We compare RayDINO to previous state-of-the-art models across nine radiology tasks, from classification and dense segmentation to text generation, and provide an in depth analysis of population, age and sex biases of our model. Our findings suggest that self-supervision allows patient-centric AI proving useful in clinical workflows and interpreting X-rays holistically. With RayDINO and small task-specific adapters, we reach state-of-the-art results and improve generalization to unseen populations while mitigating bias, illustrating the true promise of foundation models: versatility and robustness.
- Abstract(参考訳): AI Foundationのモデルは、放射線学などの医学分野など、さまざまな応用で注目を集めている。
しかしながら、医療基礎モデルは、しばしば限られたタスクでテストされ、その一般化可能性とバイアスは未調査のままである。
873kの胸部X線で自己監督によって訓練された大型ビジュアルエンコーダであるRayDinoについて紹介する。
我々はレイディーノと過去の9つの放射線学課題における最先端モデルを比較し、分類と密分化からテキスト生成までを比較し、我々のモデルにおける人口、年齢、性別の偏りを詳細に分析した。
我々の研究結果は、患者中心のAIが臨床ワークフローやX線を一様に解釈するのに有用であることを示唆している。
RayDINOと小さなタスク特化アダプタによって、我々は最先端の結果に到達し、バイアスを緩和しながら、未確認人口への一般化を改善し、基礎モデルの真の約束である汎用性と堅牢性を示す。
関連論文リスト
- The Era of Foundation Models in Medical Imaging is Approaching : A Scoping Review of the Clinical Value of Large-Scale Generative AI Applications in Radiology [0.0]
放射線技師の不足に起因する社会問題は激化しており、人工知能は潜在的な解決策として強調されている。
最近出現する大規模生成AIは、大規模言語モデル(LLM)からマルチモーダルモデルへと拡張されている。
このスコーピングレビューは、大規模生成型AIアプリケーションの臨床的価値に関する既存の文献を体系的に整理する。
論文 参考訳(メタデータ) (2024-09-03T00:48:50Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
オープンソースの小型マルチモーダルモデル(SMM)を訓練し、放射線学における未測定臨床ニーズに対する能力ギャップを埋める。
トレーニングのために,697万以上の画像テキストペアからなる大規模なデータセットを組み立てる。
評価のために,GPT-4に基づく実測値CheXpromptを提案する。
LlaVA-Radの推論は高速で、単一のV100 GPU上でプライベート設定で実行できる。
論文 参考訳(メタデータ) (2024-03-12T18:12:02Z) - The Limits of Fair Medical Imaging AI In The Wild [43.97266228706059]
医療用AIが人口統計エンコーディングをどのように利用するかを検討する。
医療画像AIは、疾患分類において、人口動態のショートカットを利用することを確認した。
人口統計属性のエンコーディングが少ないモデルは、しばしば「グローバルに最適」であることがわかった。
論文 参考訳(メタデータ) (2023-12-11T18:59:50Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuerは、一般化可能な表現を学習する自動放射線学レポート生成のための調整されたモデルである。
本研究で利用した臨床データセットは,textbf332,673の顕著な総計を含む。
ChatRadio-Valuerは、最先端のモデル、特にChatGPT(GPT-3.5-Turbo)やGPT-4などより一貫して優れている。
論文 参考訳(メタデータ) (2023-10-08T17:23:17Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language
Models [60.437091462613544]
我々は,会話型医療ビジョン言語モデルであるXrayGPTを紹介する。
胸部X線写真に関するオープンエンドの質問を分析し、答えることができる。
自由テキストラジオグラフィーレポートから217kの対話的かつ高品質な要約を生成する。
論文 参考訳(メタデータ) (2023-06-13T17:59:59Z) - Act Like a Radiologist: Radiology Report Generation across Anatomical Regions [50.13206214694885]
X-RGenは6つの解剖学的領域にわたる放射線学者によるレポート生成フレームワークである。
X-RGenでは、ヒトの放射線学者の行動を模倣し、これらを4つの主要な段階に分解する。
画像エンコーダの認識能力は,各領域にまたがる画像やレポートを分析して向上する。
論文 参考訳(メタデータ) (2023-05-26T07:12:35Z) - Vision-Language Generative Model for View-Specific Chest X-ray Generation [18.347723213970696]
ViewXGenは、フロントビュー胸部X線を生成する既存のメソッドの制限を克服するように設計されている。
提案手法は, データセット内の多様な視線位置を考慮し, 特定の視線を用いた胸部X線の生成を可能にする。
論文 参考訳(メタデータ) (2023-02-23T17:13:25Z) - Self-supervised Multi-modal Training from Uncurated Image and Reports
Enables Zero-shot Oversight Artificial Intelligence in Radiology [31.045221580446963]
医療用クロスアテンションビジョンランゲージモデル(医療用X-VL)を提案する。
我々のモデルは、ゼロショット分類からゼロショット誤り訂正まで、さまざまなゼロショットタスクを監視できる。
提案手法は,データ制限設定において特に有効であり,医療領域に広く適用可能である可能性が示唆された。
論文 参考訳(メタデータ) (2022-08-10T04:35:58Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Pristine annotations-based multi-modal trained artificial intelligence
solution to triage chest X-ray for COVID-19 [1.1764495014312295]
新型コロナウイルス(COVID-19)のパンデミックが拡大し続け、世界の人口の豊かさに影響を及ぼしている。
CT (Computed tomography) やX線といった最前線のモダリティは、新型コロナウイルス患者をトリアージする上で重要な役割を担っている。
資源(ハードウェアと訓練員の両方)の限られたアクセスと汚染対策を考えると、CTは疑わしい被験者をトリアージするのに理想的ではないかもしれない。
論文 参考訳(メタデータ) (2020-11-10T15:36:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。