論文の概要: Configurable Holography: Towards Display and Scene Adaptation
- arxiv url: http://arxiv.org/abs/2405.01558v3
- Date: Sun, 30 Mar 2025 22:32:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 19:35:56.552884
- Title: Configurable Holography: Towards Display and Scene Adaptation
- Title(参考訳): 構成可能なホログラフィー:ディスプレイとシーン適応に向けて
- Authors: Yicheng Zhan, Liang Shi, Wojciech Matusik, Qi Sun, Kaan Akşit,
- Abstract要約: 多様なディスプレイシーンパラメータをサポートしながら、3次元ホログラムをインタラクティブに合成し、高度に学習されたモデル構造を導入する。
学習領域における深度推定とホログラム合成の相関関係について検討した。
シミュレーションにおいて,高品質な3次元ホログラムを合成してモデルを検証するとともに,2種類のホログラム表示プロトタイプを用いて実験結果を検証する。
- 参考スコア(独自算出の注目度): 33.45219677645646
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Emerging learned holography approaches have enabled faster and high-quality hologram synthesis, setting a new milestone toward practical holographic displays. However, these learned models require training a dedicated model for each set of display-scene parameters. To address this shortcoming, our work introduces a highly configurable learned model structure, synthesizing 3D holograms interactively while supporting diverse display-scene parameters. Our family of models relying on this structure can be conditioned continuously for varying novel scene parameters, including input images, propagation distances, volume depths, peak brightnesses, and novel display parameters of pixel pitches and wavelengths. Uniquely, our findings unearth a correlation between depth estimation and hologram synthesis tasks in the learning domain, leading to a learned model that unlocks accurate 3D hologram generation from 2D images across varied display-scene parameters. We validate our models by synthesizing high-quality 3D holograms in simulations and also verify our findings with two different holographic display prototypes. Moreover, our family of models can synthesize holograms with a 2x speed-up compared to the state-of-the-art learned holography approaches in the literature.
- Abstract(参考訳): 新たな学習ホログラムのアプローチは、より高速で高品質なホログラム合成を可能にし、実用的なホログラムディスプレイに向けた新たなマイルストーンを樹立した。
しかし、これらの学習モデルは、ディスプレイシーンパラメータのセットごとに専用のモデルをトレーニングする必要がある。
この欠点に対処するため,我々は3次元ホログラムをインタラクティブに合成し,多様なディスプレイシーンパラメータをサポートしながら,高度に構成可能な学習モデル構造を提案する。
この構造に依存したモデル群は、入力画像、伝搬距離、体積深度、ピーク輝度、画素ピッチと波長の新規表示パラメータなど、様々な新しいシーンパラメータに対して連続的に条件付けすることができる。
学習領域における深度推定とホログラム合成の相関関係を探索し、様々な表示シーンパラメータの2次元画像から正確なホログラム生成を解き放つ学習モデルに導いた。
シミュレーションにおいて,高品質な3次元ホログラムを合成してモデルを検証するとともに,2種類のホログラム表示プロトタイプを用いて実験結果を検証する。
さらに,我々のモデル群は,文献における最新の学習ホログラフィー手法と比較して,ホログラムを2倍の速度で合成することができる。
関連論文リスト
- Visibility-Uncertainty-guided 3D Gaussian Inpainting via Scene Conceptional Learning [63.94919846010485]
3DGI)は、複数の入力ビューから補完的な視覚的・意味的手がかりを効果的に活用することが困難である。
本稿では,異なる入力ビュー間での3Dポイントの視認性不確実性を計測し,それらを用いて3DGIを誘導する手法を提案する。
ViSibility-uncerTainty-guided 3DGIとシーンコンセプトAl学習を統合し,新しい3DGIフレームワークであるVISTAを構築した。
論文 参考訳(メタデータ) (2025-04-23T06:21:11Z) - Generate Any Scene: Evaluating and Improving Text-to-Vision Generation with Scene Graph Programming [44.32980579195508]
シーングラフを列挙するフレームワークであるGenerate Any Sceneを紹介した。
Any Sceneを生成することで、各シーングラフをキャプションに変換し、テキスト・ツー・ビジョンモデルのスケーラブルな評価を可能にする。
我々は,テキスト・ツー・イメージ,テキスト・ツー・ビデオ,テキスト・ツー・3Dモデルに対して広範囲な評価を行い,モデル性能に関する重要な知見を提示する。
論文 参考訳(メタデータ) (2024-12-11T09:17:39Z) - ViewCrafter: Taming Video Diffusion Models for High-fidelity Novel View Synthesis [63.169364481672915]
単一またはスパース画像からジェネリックシーンの高忠実な新規ビューを合成する新しい方法である textbfViewCrafter を提案する。
提案手法は,映像拡散モデルの強力な生成能力と,ポイントベース表現によって提供される粗い3D手がかりを利用して高品質な映像フレームを生成する。
論文 参考訳(メタデータ) (2024-09-03T16:53:19Z) - Modeling Ambient Scene Dynamics for Free-view Synthesis [31.233859111566613]
モノクルキャプチャから周囲のシーンを動的に自由視点で合成する手法を提案する。
本手法は, 複雑な静的シーンを忠実に再構築できる3次元ガウス散乱(3DGS)の最近の進歩に基づいている。
論文 参考訳(メタデータ) (2024-06-13T17:59:11Z) - Re-Thinking Inverse Graphics With Large Language Models [51.333105116400205]
逆グラフィックス -- イメージを物理変数に反転させ、レンダリングすると観察されたシーンの再現を可能にする -- は、コンピュータビジョンとグラフィックスにおいて根本的な課題である。
LLMを中心とした逆グラフフレームワークである逆グラフ大言語モデル(IG-LLM)を提案する。
我々は、凍結した事前学習されたビジュアルエンコーダと連続的な数値ヘッドを組み込んで、エンドツーエンドのトレーニングを可能にする。
論文 参考訳(メタデータ) (2024-04-23T16:59:02Z) - Holo-VQVAE: VQ-VAE for phase-only holograms [1.534667887016089]
ホログラフィーは視覚技術革新の最前線にあり、光波振幅と位相の操作による没入型3次元可視化を提供する。
ホログラム生成に関する最近の研究は、主に画像からホログラムへの変換に焦点を当てており、既存の画像からホログラムを生成する。
位相限定ホログラム(POHs)に適した新規な生成フレームワークであるHolo-VQVAEについて述べる。
論文 参考訳(メタデータ) (2024-03-29T15:27:28Z) - TriHuman : A Real-time and Controllable Tri-plane Representation for
Detailed Human Geometry and Appearance Synthesis [76.73338151115253]
TriHumanは、人間によって調整され、変形可能で、効率的な三面体表現である。
我々は、未変形の三面体テクスチャ空間に、地球規模のサンプルを厳格にワープする。
このような三面的特徴表現が骨格運動でどのように条件付けされ、動的外観や幾何学的変化を考慮に入れられるかを示す。
論文 参考訳(メタデータ) (2023-12-08T16:40:38Z) - FLARE: Fast Learning of Animatable and Relightable Mesh Avatars [64.48254296523977]
私たちのゴールは、幾何学的に正確で、リアルで、楽しい、現在のレンダリングシステムと互換性のあるビデオから、パーソナライズ可能な3Dアバターを効率的に学習することです。
単眼ビデオからアニマタブルアバターとリライトブルアバターの作成を可能にする技術であるFLAREを紹介する。
論文 参考訳(メタデータ) (2023-10-26T16:13:00Z) - AutoColor: Learned Light Power Control for Multi-Color Holograms [15.655689651318033]
多色ホログラムは複数の光源からの同時照明に依存している。
マルチカラーホログラムを照らすのに必要な最適な光源パワーを推定するための最初の学習手法であるAutoColorを紹介する。
論文 参考訳(メタデータ) (2023-05-02T17:14:03Z) - RiCS: A 2D Self-Occlusion Map for Harmonizing Volumetric Objects [68.85305626324694]
カメラ空間における光マーチング (RiCS) は、3次元における前景物体の自己閉塞を2次元の自己閉塞マップに表現する新しい手法である。
表現マップは画像の質を高めるだけでなく,時間的コヒーレントな複雑な影効果をモデル化できることを示す。
論文 参考訳(メタデータ) (2022-05-14T05:35:35Z) - Time-multiplexed Neural Holography: A flexible framework for holographic
near-eye displays with fast heavily-quantized spatial light modulators [44.73608798155336]
ホログラフィックの近眼ディスプレイは、バーチャルおよび拡張現実システムに前例のない機能を提供する。
このようなホログラム近眼ディスプレイのカメラ校正波伝搬モデルの進歩を報告する。
我々のフレームワークは,2Dおよび2.5D RGBDイメージ,3D焦点スタック,4D光フィールドなど,さまざまなタイプのコンテンツで実行時の監視を支援するために柔軟である。
論文 参考訳(メタデータ) (2022-05-05T00:03:50Z) - Realistic Image Synthesis with Configurable 3D Scene Layouts [59.872657806747576]
本稿では,3次元シーンレイアウトに基づくリアルな画像合成手法を提案する。
提案手法では, セマンティッククラスラベルを入力として3Dシーンを抽出し, 3Dシーンの描画ネットワークを訓練する。
訓練された絵画ネットワークにより、入力された3Dシーンのリアルな外観の画像を描画し、操作することができる。
論文 参考訳(メタデータ) (2021-08-23T09:44:56Z) - Learned holographic light transport [2.642698101441705]
ホログラフィーアルゴリズムはしばしば物理ホログラフィーディスプレイの結果と一致するシミュレーションで不足する。
我々の研究はホログラフィックディスプレイのホログラフィック光輸送を学習することで、このミスマッチに対処する。
本手法はホログラフィックディスプレイのシミュレーション精度と画質を劇的に向上させることができる。
論文 参考訳(メタデータ) (2021-08-01T12:05:33Z) - Pixel Codec Avatars [99.36561532588831]
Pixel Codec Avatars(PiCA)は、3D人間の顔の深い生成モデルです。
oculus quest 2のモバイルvrヘッドセットでは、同じシーンで5つのアバターがリアルタイムでレンダリングされる。
論文 参考訳(メタデータ) (2021-04-09T23:17:36Z) - Towards Realistic 3D Embedding via View Alignment [53.89445873577063]
本稿では,3次元モデルを2次元背景画像に現実的に,かつ自動的に埋め込み,新たな画像を構成する,革新的なビューアライメントGAN(VA-GAN)を提案する。
VA-GANはテクスチャジェネレータとディファレンシャルディスクリミネーターで構成され、相互接続され、エンドツーエンドのトレーニングが可能である。
論文 参考訳(メタデータ) (2020-07-14T14:45:00Z) - GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis [43.4859484191223]
近年,単一シーンの新規なビュー合成に成功している放射場生成モデルを提案する。
マルチスケールのパッチベース判別器を導入し,非姿勢の2次元画像からモデルを訓練しながら高解像度画像の合成を実演する。
論文 参考訳(メタデータ) (2020-07-05T20:37:39Z) - Intrinsic Autoencoders for Joint Neural Rendering and Intrinsic Image
Decomposition [67.9464567157846]
合成3Dモデルからリアルな画像を生成するためのオートエンコーダを提案し,同時に実像を本質的な形状と外観特性に分解する。
実験により, レンダリングと分解の併用処理が有益であることが確認され, 画像から画像への翻訳の質的, 定量的なベースラインよりも優れた結果が得られた。
論文 参考訳(メタデータ) (2020-06-29T12:53:58Z) - Deep DIH : Statistically Inferred Reconstruction of Digital In-Line
Holography by Deep Learning [1.4619386068190985]
デジタルインラインホログラフィーは、顕微鏡オブジェクトの2次元ホログラムから3次元画像を再構成するのに一般的に用いられる。
本稿では,シングルショットホログラム再構成のためのオートエンコーダに基づくディープラーニングアーキテクチャの実装を提案する。
論文 参考訳(メタデータ) (2020-04-25T20:39:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。